Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Overview

Suture detection PyTorch

This repo contains the reference implementation of suture detection model in PyTorch for the paper

Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Lalith Sharan, Gabriele Romano, Julian Brand, Halvar Kelm, Matthias Karck, Raffaele De Simone, Sandy Engelhardt

Accepted, IJCARS 2021

Please see the license file for terms os use of this repo. If you find our work useful in your research please consider citing our paper:

Sharan, L., Romano, G., Brand, J. et al. Point detection through multi-instance deep heatmap regression for 
sutures in endoscopy. Int J CARS (2021). https://doi.org/10.1007/s11548-021-02523-w

Setup

A conda environment is recommended for setting up an environment for model training and prediction. There are two ways this environment can be set up:

  1. Cloning conda environment (recommended)
conda env create -f suture_detection_pytorch.yml
conda activate suture_detection_pytorch

If the installation from .yml file does not work, it may be a cuda error. The solution is to either install the failed packages via pip, or use the pip requirements file here.

  1. Installing requirements
conda intall --file conda_requirements.txt
conda install -c pytorch torchvision=0.7.0
pip install --r requirements.txt

Prediction of suture detection for a single image

You can predict the suture points for a single image with:

python test.py --dataroot ~/data/mkr_dataset/ --exp_dir ~/experiments/unet_baseline_fold_1/ --save_pred_points
  • The command save_pred_points saves the predicted landmark co-ordinates in the resepective op folders in the ../predictions directory.
  • The command save_pred_mask saves the predicted mask that is the output of the model in the resepective op folders in the ../predictions directory. The final points are extracted from this mask.

Dataset preparation

You can download the challenge dataset from the synapse platform by signing up for the AdaptOR 2021 Challenge from the Synapse platform.

  • The Challenge data is present in this format: dataroot --> op_date --> video_folders --> images, point_labels
  • Generate the masks with a blur function and spread by running the following script:
python generate_suture_masks.py --dataroot /path/to/data --blur_func gaussian --spread 2
  • Generate the split files for the generated masks, for cross-validation by running the following script: You can predict depth for a single image with:
python generate_splits.py --splits_name mkr_dataset --num_folds 4

Training a model

Once you have prepared the dataset, you can train the model with:

python train.py --dataroot /path/to/data
Owner
artificial intelligence in the area of cardiovascular healthcare
artificial intelligence in the area of cardiovascular healthcare
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022