RL Algorithms with examples in Python / Pytorch / Unity ML agents

Overview

Reinforcement Learning Project

This project was created to make it easier to get started with Reinforcement Learning. It now contains:

Getting Started

Install Basic Dependencies

To set up your python environment to run the code in the notebooks, follow the instructions below.

  • If you're on Windows I recommend installing Miniforge. It's a minimal installer for Conda. I also recommend using the Mamba package manager instead of Conda. It works almost the same as Conda, but only faster. There's a cheatsheet of Conda commands which also work in Mamba. To install Mamba, use this command:
conda install mamba -n base -c conda-forge 
  • Create (and activate) a new environment with Python 3.6 or later. I recommend using Python 3.9:

    • Linux or Mac:
    mamba create --name rl39 python=3.9 numpy
    source activate rl39
    • Windows:
    mamba create --name rl39 python=3.9 numpy
    activate rl39
  • Install PyTorch by following instructions on Pytorch.org. For example, to install PyTorch on Windows with GPU support, use this command:

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Install additional packages:
mamba install jupyter notebook matplotlib
python -m ipykernel install --user --name rl39 --display-name "rl39"
  • Change the kernel to match the rl39 environment by using the drop-down menu Kernel -> Change kernel inside Jupyter Notebook.

Install Unity Machine Learning Agents

Note: In order to run the notebooks on Windows, it's not necessary to install the Unity Editor, because I have provided the standalone executables of the environments for you.

Unity ML Agents is the software that we use for the environments. The agents that we create in Python can interact with these environments. Unity ML Agents consists of several parts:

  • The Unity Editor is used for creating environments. To install:

    • Install Unity Hub.
    • Install the latest version of Unity by clicking on the green button Unity Hub on the download page.

    To start the Unity editor you must first have a project:

    • Start the Unity Hub.
    • Click on "Projects"
    • Create a new dummy project.
    • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.
  • The Unity ML-Agents Toolkit. Download the latest release of the source code or use the Git command: git clone --branch release_18 https://github.com/Unity-Technologies/ml-agents.git.

  • The Unity ML Agents package is used inside the Unity Editor. Please read the instructions for installation.

  • The mlagents Python package is used as a bridge between Python and the Unity editor (or standalone executable). To install, use this command: python -m pip install mlagents==0.27.0. Please note that there's no conda package available for this.

Install an IDE for Python

For Windows, I would recommend using PyCharm (my choice), or Visual Studio Code. Inside those IDEs you can use the Conda environment you have just created.

Creating a custom Unity executable

Load the examples project

The Unity ML-Agents Toolkit contains several example environments. Here we will load them all inside the Unity editor:

  • Start the Unity Hub.
  • Click on "Projects"
  • Add a project by navigating to the Project folder inside the toolkit.
  • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.

Create a 3D Ball executable

The 3D Ball example contains 12 environments in one, but this doesn't work very well in the Python API. The main problem is that there's no way to reset each environment individually. Therefore, we will remove the other 11 environments in the editor:

  • Load the 3D Ball scene, by going to the project window and navigating to Examples -> 3DBall -> Scenes-> 3DBall
  • In the Hierarchy window select the other 11 3DBall objects and delete them, so that only the 3DBall object remains.

Next, we will build the executable:

  • Go to File -> Build Settings
  • In the Build Settings window, click Build
  • Navigate to notebooks folder and add 3DBall to the folder name that is used for the build.

Instructions for running the notebooks

  1. Download the Unity executables for Windows. In case you're not on Windows, you have to build the executables yourself by following the instructions above.
  2. Place the Unity executable folders in the same folder as the notebooks.
  3. Load a notebook with Jupyter notebook. (The command to start Jupyter notebook is jupyter notebook)
  4. Follow further instructions in the notebook.
You might also like...
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

Releases(v1.0.0)
Owner
Rogier Wachters
Rogier Wachters
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023