Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Overview

Logo

Türkiye Mobese Görüntü Takip

Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi

Multiple Object Tracking System in Turkish Mobese with OPENCV and Yolo
Explore the docs » Projeyi keşfet

Table of Contents / İçerik Bölümü
  1. About the Project / Proje Hakkında
  2. Getting Started / Başlangıç
  3. Usage / Kullanım
  4. Roadmap / Yol Haritası
  5. Contributing / Katkı
  6. License / Lisans

If you are having any os compatiblity issue, let me know. I will try to fix as soon as possible so let's explore the docs.

Herhangi bir işletim sistemi uyumsuzluğu varsa, bana bildirin. En kısa sürede düzeltmeye çalışacağım, hadi dökümanı inceleyelim.

About the Project / Proje Hakkında

Currently this project have 171 cameras. | Projeye yüklü 171 canlı mobese görüntüsü vardır.

İstanbul > 44 Canlı Yayın          |   İstanbul > 44 Live CCTV Footage
İzmir > 76 Canlı Yayın             |   İzmir > 76 Live CCTV Footage
Tekirdag > 1 Canlı Yayın           |   Tekirdag > 1 Live CCTV Footage
Konya > 32 Canlı Yayın             |   Konya > 32 Live CCTV Footage
Ordu > 21 Canlı Yayın              |   Ordu > 21 Live CCTV Footage

This project implements Turkish Mobese CCTV footages detection classifier using pretrained yolov4-tiny models. If you trust your computer performance you can download yolov4 models too. The yolov4 models are taken from the official yolov4 paper which was released in April 2020 and the yolov4 implementation is from darknet.

Bu proje, önceden eğitilmiş yolov4-tiny modellerini kullanarak Türk Mobese Canlı CCTV görüntülerine algılama sınıflandırıcısını uygular. Bilgisayarınızın performansına güveniyorsanız yolov4 modellerinide indirebilirsiniz. Yolov4 modelleri, Nisan 2020'de yayınlanan resmi yolov4 belgesinden alınmıştır ve Yolov4 uygulaması darknet'tendir.

Built With / Kullanılanlar

Getting Started / Başlangıç

To get a local copy up and running follow these simple steps.

Kendi bilgisayarınızda çalıştırmak için bu basit adımları izleyin.

Installation / Kurulum

  1. Clone the repo | Projeyi indir.
    git clone https://github.com/samet-g/mobese.git
  2. Install Python packages | Gerekli Python paketlerini yükle.
    pip3 install -r requirements.txt

Usage / Kullanım

  • Run with Python or Download the .exe file.
  • Python kullanarak çalıştır veya .exe dosyasını indir
python3 main.py | just run .exe file

Roadmap / Yol Haritası

See the open issues for a list of proposed features
It should be good use cctv cameras in city with Shodan API or make GUI.

Sorunlar için açık sorunları kontrol edin.
Shodan API ile esnaf güvenlik kamerası kullanmak veya GUI yapmak iyi olur.

Contributing / Katkı

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated especially Roadmap / Yol Haritası check this to-do list.

Katkılar, açık kaynak topluluğu için büyük nimettir özellikle Roadmap / Yol Haritası kısmındaki yapılacak-listesini kontrol edin.

  1. Fork the Project | Projeyi forkla.
  2. Create your Feature Branch | Katkıda Bulun
    git checkout -b feature/YeniOzellik
  3. Commit your Changes | Değişiklikleri Commitle
    git commit -m 'Add some YeniOzellik'
  4. Push to the Branch | Değişikliğini Yolla
    git push origin feature/YeniOzellik
  5. Open a Pull Request | Pull Request Aç

License / Lisans

Distributed under the GNU License.
See LICENSE for more information.

GNU Lisansı altında dağıtılmaktadır.
Daha fazla bilgi için LICENSE bölümüne bakın.

Comments
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.0.0)
Owner
cybersec researcher and python dev.
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

56 Dec 22, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022