Chatbot in 200 lines of code using TensorLayer

Overview

Seq2Seq Chatbot

This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code:

Prerequisites

Model


Training

python3 main.py

Results

Query > happy birthday have a nice day
 > thank you so much
 > thank babe
 > thank bro
 > thanks so much
 > thank babe i appreciate it
Query > donald trump won last nights presidential debate according to snap online polls
 > i dont know what the fuck is that
 > i think he was a racist
 > he is not a racist
 > he is a liar
 > trump needs to be president
Comments
  • [WIP] Fix error in PR #16 Inference mode and TF compatibility

    [WIP] Fix error in PR #16 Inference mode and TF compatibility

    Hey @pskrunner14

    Thanks for the great PR! We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again? You can create a PR from your fork again or directly modify from here.

    Cheers, Luo

    opened by luomai 6
  • No module named 'tensorlayer.models.seq2seq'

    No module named 'tensorlayer.models.seq2seq'

    Can someone share with me how to resolve this error? Thanks.

    Traceback (most recent call last): File "D:\ChatBot\seq2seq-chatbot-master\main.py", line 11, in from tensorlayer.models.seq2seq import Seq2seq ModuleNotFoundError: No module named 'tensorlayer.models.seq2seq'

    opened by geongm 5
  • Change seq2seq import names

    Change seq2seq import names

    Had the #37 problem. It looks like on in current version of tensorlayer import names changed.

    These imports work with tensorflow 2.0.0-beta1 tensorlayer 2.1.0

    opened by egens 4
  • TL2.0

    TL2.0

    Update model compatible with TensorLayer2.0. Rewrite the loss. cross_entropy_seq_with_mask and cross_entropy_seq. Need to run to see if it converges and produce desirable results

    opened by ArnoldLIULJ 3
  • Inference mode and TF compatibility

    Inference mode and TF compatibility

    • Moved Inference code to a function.
    • Added optional arguments including running script in inference mode [usage python main.py --help].
    • Added tqdm progress bar for info while training.
    • Made the code compatible with TF v1.10.0 and TL v1.10.1.
    • Changed tf.contrib.rnn.BasicLSTMCell to tf.nn.rnn_cell.LSTMCell since the former is deprecated.
    • Moved session config to global scope.
    • Refactored code into relevant functions and reordered them so that the higher-level ones appear earlier in the code.
    • Renamed script to main.py for ease of use.
    • Updated README to add training and inference usage commands.
    • Added requirements.txt file.
    • Changed n.npz to model.npz since it is more standard.

    Note: Fixes #12 and #15

    opened by pskrunner14 3
  • Using the Chatbot

    Using the Chatbot

    Hi there,

    I trained the data for a few days and now the samples are returning good results to the predefined "Happy Birthday" and "Trump" requests.

    Great job by you. Thanks so far.

    Do you already have a small python program for using the chatbot? If I write a message, the chatbot should return a single answer.

    Thanks Chris

    opened by cpro90 3
  • Training is taking too much time

    Training is taking too much time

    Training on CPU is taking too much time, so do you have any estimate how much time it will take? I have executed this 12 hours ago and now i am on just "Epoch[2/50] step:[600/2852] loss:5.684645 took:9.62770s". Can you please help me to boost this training.

    opened by aqeellegalinc 3
  • Inference mode and TF compatibility (#16)

    Inference mode and TF compatibility (#16)

    @pskrunner14

    We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again?

    opened by luomai 2
  • Fixes TL global variables initializer deprecated issue and Code readability

    Fixes TL global variables initializer deprecated issue and Code readability

    Fixed TensorLayer initialize global vars deprecated issue #13, changed learning rate to 0.001 for faster convergence, improved code readability and removed redundant comments and code

    opened by pskrunner14 2
  • Can't import data

    Can't import data

    ModuleNotFoundError Traceback (most recent call last) in () 8 9 ###============= prepare data ---> 10 from data.twitter import data 11 metadata, idx_q, idx_a = data.load_data(PATH='data/twitter/') # Twitter 12 # from data.cornell_corpus import data

    ModuleNotFoundError: No module named 'data.twitter'

    opened by georgexli 2
  • No module named twitter

    No module named twitter

    File "main_simple_seq2seq.py", line 18, in from data.twitter import data ImportError: No module named twitter

    Did I miss some files? Can you please help me?Many thanks^ o^

    opened by MProtoss 1
  • ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    I am trying to write code for Chat Box, but encountering the error "ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package" when trying to execute "from data.twitter import data".

    Please suggest , how to resolve the issue?

    note: I am working on following environment: Python is 3.6 V Tensorflow : 2.0 Tensorlayer: 2.2 python-twitter

    opened by mhmitalihalder 0
  • How could I get the

    How could I get the "thought vector" using TensorLayer?

    I am using the seq2seq model as an autoencoder. Given a test paragraph, I'd like to get the thought vector (using the terminology in the figure of README.md).

    opened by munichong 0
Releases(0.1)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022