PyTorch implementation of spectral graph ConvNets, NIPS’16

Overview

Graph ConvNets in PyTorch

October 15, 2017

Xavier Bresson

http://www.ntu.edu.sg/home/xbresson
https://github.com/xbresson
https://twitter.com/xbresson

Description

Prototype implementation in PyTorch of the NIPS'16 paper:
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
M Defferrard, X Bresson, P Vandergheynst
Advances in Neural Information Processing Systems, 3844-3852, 2016
ArXiv preprint: arXiv:1606.09375

Code objective

The code provides a simple example of graph ConvNets for the MNIST classification task.
The graph is a 8-nearest neighbor graph of a 2D grid.
The signals on graph are the MNIST images vectorized as $28^2 \times 1$ vectors.

Installation

git clone https://github.com/xbresson/graph_convnets_pytorch.git
cd graph_convnets_pytorch
pip install -r requirements.txt # installation for python 3.6.2
python check_install.py
jupyter notebook # run the 2 notebooks

Results

GPU Quadro M4000

  • Standard ConvNets: 01_standard_convnet_lenet5_mnist_pytorch.ipynb, accuracy= 99.31, speed= 6.9 sec/epoch.
  • Graph ConvNets: 02_graph_convnet_lenet5_mnist_pytorch.ipynb, accuracy= 99.19, speed= 100.8 sec/epoch

Note

PyTorch has not yet implemented function torch.mm(sparse, dense) for variables: https://github.com/pytorch/pytorch/issues/2389. It will be certainly implemented but in the meantime, I defined a new autograd function for sparse variables, called "my_sparse_mm", by subclassing torch.autograd.function and implementing the forward and backward passes.

class my_sparse_mm(torch.autograd.Function):
    """
    Implementation of a new autograd function for sparse variables, 
    called "my_sparse_mm", by subclassing torch.autograd.Function 
    and implementing the forward and backward passes.
    """
    
    def forward(self, W, x):  # W is SPARSE
        self.save_for_backward(W, x)
        y = torch.mm(W, x)
        return y
    
    def backward(self, grad_output):
        W, x = self.saved_tensors 
        grad_input = grad_output.clone()
        grad_input_dL_dW = torch.mm(grad_input, x.t()) 
        grad_input_dL_dx = torch.mm(W.t(), grad_input )
        return grad_input_dL_dW, grad_input_dL_dx

When to use this algorithm?

Any problem that can be cast as analyzing a set of signals on a fixed graph, and you want to use ConvNets for this analysis.




Owner
Xavier Bresson
Xavier Bresson
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022