Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Overview

Text-AutoAugment (TAA)

This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification (EMNLP 2021 main conference).

Overview of IAIS

Overview

  1. We present a learnable and compositional framework for data augmentation. Our proposed algorithm automatically searches for the optimal compositional policy, which improves the diversity and quality of augmented samples.

  2. In low-resource and class-imbalanced regimes of six benchmark datasets, TAA significantly improves the generalization ability of deep neural networks like BERT and effectively boosts text classification performance.

Getting Started

  1. Prepare environment

    conda create -n taa python=3.6
    conda activate taa
    conda install pytorch torchvision cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
    pip install -r requirements.txt 
    python -c "import nltk; nltk.download('wordnet'); nltk.download('averaged_perceptron_tagger')"
  2. Modify dataroot parameter in confs/*yaml and abspath parameter in script/*.sh:

    • e.g., change dataroot: /home/renshuhuai/TextAutoAugment/data/aclImdb in confs/bert_imdb.yaml to dataroot: path-to-your-TextAutoAugment/data/aclImdb
    • change --abspath '/home/renshuhuai/TextAutoAugment' in script/imdb_lowresource.sh to --abspath 'path-to-your-TextAutoAugment'
  3. Search for the best augmentation policy, e.g., low-resource regime for IMDB:

    sh script/imdb_lowresource.sh

    scripts for policy search in the low-resource and class-imbalanced regime for all datasets are provided in the script/ fold.

  4. Train a model with pre-searched policy in archive.py, e.g., train model in low-resource regime for IMDB:

    python train.py -c confs/bert_imdb.yaml 

    train model on full dataset of IMDB:

    python train.py -c confs/bert_imdb.yaml --train-npc -1 --valid-npc -1 --test-npc -1  

Contact

If you have any questions related to the code or the paper, feel free to email Shuhuai (renshuhuai007 [AT] gmail [DOT] com).

Acknowledgments

Code refers to: fast-autoaugment.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{ren2021taa,
  title={Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification},
  author={Shuhuai Ren, Jinchao Zhang, Lei Li, Xu Sun, Jie Zhou},
  booktitle={EMNLP},
  year={2021}
}

License

MIT

Owner
LancoPKU
Language Computing and Machine Learning Group (Xu Sun's group) at Peking University
LancoPKU
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022