Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

Overview

CMT

Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award)

[Paper] [Site]

Directory Structure

  • src/: code of the whole pipeline

    • train.py: training script, take a npz as input music data to train the model

    • model.py: code of the model

    • gen_midi_conditional.py: inference script, take a npz (represents a video) as input to generate several songs

    • src/video2npz/: convert video into npz by extracting motion saliency and motion speed

  • dataset/: processed dataset for training, in the format of npz

  • logs/: logs that automatically generate during training, can be used to track training process

  • exp/: checkpoints, named after val loss (e.g. loss_13_params.pt)

  • inference/: processed video for inference (.npz), and generated music(.mid)

Preparation

  • clone this repo

  • download lpd_5_prcem_mix_v8_10000.npz from HERE and put it under dataset/

  • download pretrained model loss_8_params.pt from HERE and put it under exp/

  • install ffmpeg=3.2.4

  • prepare a Python3 conda environment

    pip install -r py3_requirements.txt
  • prepare a Python2 conda environment (for extracting visbeat)

    • pip install -r py2_requirements.txt
    • open visbeat package directory (e.g. anaconda3/envs/XXXX/lib/python2.7/site-packages/visbeat), replace the original Video_CV.py with src/video2npz/Video_CV.py

Training

  • If you want to use another training set: convert training data from midi into npz under dataset/

    python midi2numpy_mix.py --midi_dir /PATH/TO/MIDIS/ --out_name data.npz 
  • train the model

    python train.py -n XXX -g 0 1 2 3
    
    # -n XXX: the name of the experiment, will be the name of the log file & the checkpoints directory. if XXX is 'debug', checkpoints will not be saved
    # -l (--lr): initial learning rate
    # -b (--batch_size): batch size
    # -p (--path): if used, load model checkpoint from the given path
    # -e (--epochs): number of epochs in training
    # -t (--train_data): path of the training data (.npz file) 
    # -g (--gpus): ids of gpu
    # other model hyperparameters: modify the source .py files

Inference

  • convert input video (MP4 format) into npz (use the Python2 environment)

    cd src/video2npz
    sh video2npz.sh ../../videos/xxx.mp4
    • try resizing the video if this takes a long time
  • run model to generate .mid :

    python gen_midi_conditional.py -f "../inference/xxx.npz" -c "../exp/loss_8_params.pt"
    
    # -c: checkpoints to be loaded
    # -f: input npz file
    # -g: id of gpu (only one gpu is needed for inference) 
    • if using another training set, change decoder_n_class in gen_midi_conditional to the decoder_n_class in train.py
  • convert midi into audio: use GarageBand (recommended) or midi2audio

    • set tempo to the value of tempo in video2npz/metadata.json
  • combine original video and audio into video with BGM

    ffmpeg -i 'xxx.mp4' -i 'yyy.mp3' -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 'zzz.mp4'
    
    # xxx.mp4: input video
    # yyy.mp3: audio file generated in the previous step
    # zzz.mp4: output video
Owner
Zhaokai Wang
Undergraduate student from Beihang University
Zhaokai Wang
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022