code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

Overview

On Robust Prefix-Tuning for Text Classification

Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adapting pretrained language models to downstream tasks. However, we find that prefix-tuning suffers from adversarial attacks. While, unfortunately, current robust NLP methods are unsuitable for prefix-tuning as they will inevitably hamper the modularity of prefix-tuning. In our ICLR'22 paper, we propose robust prefix-tuning for text classification. Our method leverages the idea of test-time tuning, which preserves the strengths of prefix-tuning and improves its robustness at the same time. This repository contains the code for the proposed robust prefix-tuning method.

Prerequisite

PyTorch>=1.2.0, pytorch-transformers==1.2.0, OpenAttack==2.0.1, and GPUtil==1.4.0.

Train the original prefix P_θ

For the training phase of standard prefix-tuning, the command is:

  source train.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E]

where

  • [A]: The length of the prefix P_θ.
  • [B]: The (initial) learning rate.
  • [C]: The benchmark. Default: sst.
  • [D]: The total epochs during training.
  • [E]: The id of the GPU to be used.

We can also use adversarial training to improve the robustness of the prefix. For the training phase of adversarial prefix-tuning, the command is:

  source train_adv.sh --preseqlen [A] --learning_rate [B] --tasks [C] --n_train_epochs [D] --device [E] --pgd_ball [F]

where

  • [A]~[E] have the same meanings with above.
  • [F]: where norm ball is word-wise or sentence-wise.

Note that the DATA_DIR and MODEL_DIR in train_adv.sh are different from those in train.sh. When experimenting with the adversarially trained prefix P_θ's in the following steps, remember to switch the DATA_DIR and MODEL_DIR in the corresponding scripts as well.

Generate Adversarial Examples

We use the OpenAttack package to generate in-sentence adversaries. The command is:

  source generate_adv_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H]

where

  • [A],[B],[C],[E] have the same meanings with above.
  • [G]: Load the prefix P_θ parameters trained for [G] epochs for testing. We set G=D.
  • [H]: Generate adversarial examples based on clean test set with the in-sentence attack [H].

We also implement the Universal Adversarial Trigger attack. The command is:

  source generate_adv_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean-[H2] --uat_len [I] --uat_epoch [J]

where

  • [A],[B],[C],[E],[G] have the same meanings with above.
  • [H2]: We should search for UATs for each class in the benchmark, and H2 indicates the class id. H2=0/1 for SST, 0/1/2/3 for AG News, and 0/1/2 for SNLI.
  • [I]: The length of the UAT.
  • [J]: The epochs for exploiting UAT.

Test the performance of P_θ

The command for performance testing of P_θ under clean data and in-sentence attacks is:

  source test_prefix_theta_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K]

Under UAT attack, the test command is:

  source test_prefix_theta_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K]

where

  • [A]~[I] have the same meanings with above.
  • [K]: The test batch size. when K=0, the batch size is adaptive (determined by GPU memory); when K>0, the batch size is fixed.

Robust Prefix P'_ψ: Constructing the canonical manifolds

By constructing the canonical manifolds with PCA, we get the projection matrices. The command is:

  source get_proj.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G]

where [A]~[G] have the same meanings with above.

Robust Prefix P'_ψ: Test its performance

Under clean data and in-sentence attacks, the command is:

  source test_robust_prefix_psi_insent.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack [H] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

Under UAT attack, the test command is:

  source test_robust_prefix_psi_uat.sh --preseqlen [A] --learning_rate [B] --tasks [C] --device [E] --test_ep [G] --attack clean --uat_len [I] --test_batch_size [K] --PMP_lr [L] --PMP_iter [M]

where

  • [A]~[K] have the same meanings with above.
  • [L]: The learning rate for test-time P'_ψ tuning.
  • [M]: The iterations for test-time P'_ψ tuning.

Running Example

# Train the original prefix P_θ
source train.sh --tasks sst --n_train_epochs 100 --device 0
source train_adv.sh --tasks sst --n_train_epochs 100 --device 1 --pgd_ball word

# Generate Adversarial Examples
source generate_adv_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-0 --uat_len 3 --uat_epoch 10
source generate_adv_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean-1 --uat_len 3 --uat_epoch 10

# Test the performance of P_θ
source test_prefix_theta_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0
source test_prefix_theta_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0

# Robust Prefix P'_ψ: Constructing the canonical manifolds
source get_proj.sh --tasks sst --device 0 --test_ep 100

# Robust Prefix P'_ψ: Test its performance
source test_robust_prefix_psi_insent.sh --tasks sst --device 0 --test_ep 100 --attack bug --test_batch_size 0 --PMP_lr 0.15 --PMP_iter 10
source test_robust_prefix_psi_uat.sh --tasks sst --device 0 --test_ep 100 --attack clean --uat_len 3 --test_batch_size 0 --PMP_lr 0.05 --PMP_iter 10

Released Data & Models

The training the original prefix P_θ and the process of generating adversarial examples can be time-consuming. As shown in our paper, the adversarial prefix-tuning is particularly slow. Efforts need to be paid on generating adversaries as well, since different attacks are to be performed on the test set based on each trained prefix. We also found that OpenAttack is now upgraded to v2.1.1, which causes compatibility issues in our codes (test_prefix_theta_insent.py).

In order to facilitate research on the robustness of prefix-tuning, we release the prefix checkpoints P_θ (with both std. and adv. training), the processed test sets that are perturbed by in-sentence attacks (including PWWS and TextBugger), as well as the generated projection matrices of the canonical manifolds in our runs for reproducibility and further enhancement. We have also hard-coded the exploited UAT tokens in test_prefix_theta_uat.py and test_robust_prefix_psi_uat.py. All the materials can be found here.

Acknowledgements:

The implementation of robust prefix tuning is based on the LAMOL repo, which is the code of LAMOL: LAnguage MOdeling for Lifelong Language Learning that studies NLP lifelong learning with GPT-style pretrained language models.

Bibtex

If you find this repository useful for your research, please consider citing our work:

@inproceedings{
  yang2022on,
  title={On Robust Prefix-Tuning for Text Classification},
  author={Zonghan Yang and Yang Liu},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=eBCmOocUejf}
}
Owner
Zonghan Yang
Graduate student in Tsinghua University. Two drifters, off to see the world - there's such a lot of world to see...
Zonghan Yang
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022