Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Overview

Machine Learning and Data Mining, Summer 2021-2022

How to learn data science and machine learning?

  1. Programming. Learn Python.
  2. Basic Statistics. Take a look at the amazing YouTube channel in the Maths section.
  3. Databases. Learn SQL. Check out mode.com.
  4. Exploratory Data Analysis. Learn how to work with NumPy, Pandas, Matplotlib, Seaborn.
  5. Machine Learning. Learn the various algorithms. Explore Scikit learn.
  6. Data scraping. Explore the Beautiful soup library.
  7. Study the niches: deep learning, nlp (natural language processing), cv (computer vision).
  8. Deployment. Explore Flask, Streamlit, Django.

Framework

  1. Learn just enough.
  2. Do a project. For example choose one from Kaggle.
  3. Iterate.
  4. Accountability. Show off your work on Github.

Most important APIs

Resources

Python

Markdown

Maths

Machine learning and Deep learning

Books

Owner
Simeon Hristov
Loading ...
Simeon Hristov
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking ๏ผˆCVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Neural Cellular Automata + CLIP

๐Ÿง  Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norรฉn 21.8k Jan 09, 2023
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
YOLO-v5 ๊ธฐ๋ฐ˜ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adaptive Cruise Control ๊ธฐ๋Šฅ ๊ตฌํ˜„

์ž์œจ ์ฃผํ–‰์ฐจ์˜ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์œ ์ง€ ๊ฐœ๋ฐœ Table of Contents ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ์ฃผ์š” ๊ธฐ๋Šฅ ์‹œ์Šคํ…œ ๊ตฌ์กฐ ๋””๋ ‰ํ† ๋ฆฌ ๊ตฌ์กฐ ๊ฒฐ๊ณผ ์‹คํ–‰ ๋ฐฉ๋ฒ• ์ฐธ์กฐ ํŒ€์› ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ YOLO-v5 ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adap

14 Jun 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
JupyterLite demo deployed to GitHub Pages ๐Ÿš€

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. โœจ Try it in your browser โœจ โžก๏ธ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023