SGoLAM - Simultaneous Goal Localization and Mapping

Related tags

Deep LearningSGoLAM
Overview

SGoLAM - Simultaneous Goal Localization and Mapping

PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and Mapping [Talk Video]. Our method does not employ any training of neural networks, but shows competent performance in the MultiON benchmark. In fact, we outperform the winning entry by a large margin in terms of success rate.

alt text

We encourage future participants of the MultiON challenge to use our code as a starting point for implementing more sophisticated navigation agents. If you have any questions on running SGoLAM please leave an issue.

Notes on Installation

To run experiments locally/on a server, follow the 'bag of tricks' below:

  1. Please abide by the steps provided in the original MultiON repository. (Don't bother looking at other repositories!)
  2. Along the installation process, numerous dependency errors will occur. Don't look for other workarounds and just humbly install what is missing.
  3. For installing Pytorch and other CUDA dependencies, it seems like the following command works: conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch.
  4. By the way, habitat-lab installation is much easier than habitat-sim. You don't necessarily need to follow the instructions provided in the MultiON repository for habitat-lab. Just go directly to the habitat-lab repository and install habitat-lab. However, for habitat-sim, you must follow MultiON's directions; or a pile of bugs will occur.
  5. One python evaluate.py is run, a horrifying pile of dependency errors will occur. Now we will go over some of the prominent ones.
  6. To solve AttributeError: module 'attr' has no attribute 's', run pip uninstall attr and then run pip install attrs.
  7. To solve ModuleNotFoundError: No module named 'imageio', run pip install imageio-ffmpeg.
  8. To solve ImportError: ModuleNotFoundError: No module named 'magnum', run pip install build/deps/magnum-bindings/src/python.
  9. The last and most important 'trick' is to google errors. The Habitat team seems to be doing a great job answering GitHub issues. Probably someone has already ran into the error you are facing.
  10. If additional 'tricks' are found, feel free to share by appending to the list starting from here. `

Docker Sanity Check (Last Modified: 2021.03.26:20:11)

A number of commands to take for docker sanity check.

Login

First, login to the dockerhub repository. As our accounts don't support private repositories with multiple collaborators, we need to share a single ID. For the time being let's use my ID. Type the following command

docker login

Now one will be prompted a user ID and PW. Please type ID: esteshills PW: 82magnolia.

Pull Image

I have already built an image ready for preliminary submission. It can be easily pulled using the following command.

docker pull esteshills/multion_test:tagname

Run Evaluation

To make an evaluation for standard submission, run the following command. Make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running.

cd scripts/
./test_docker.sh

Playing around with Docker Images

One may want to further examine the docker image. Run the following command.

cd scripts/
./test_docker_bash.sh

Again, make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running. Note that the commands provided in the MultiON repository can be run inside the container. For example:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --agent-type no-map --run-type eval

In order to run other baselines, i) modify the checkpoint path in the .yaml file, ii) download the model checkpoint, iii) change the agent type.

Preventing Hassles with Docker (Last Modified: 2021.04.08:09:07)

Now we probably don't need to develop with docker. Just plug in your favorite agent following the instructions provided below.

Plug-and-Play New Agents

One can easily test new agents by providing the file name containing agent implementation. To implement a new agent, please refer to agents/example.py. To test a new agent and get evaluation results, run the following command (this is an example for the no_map baseline).

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill

In addition, one can change the number of episodes to be tested. However, this feature is only available in the annotated branch, as it requires a slight modification in the core habitat repository. Run the following command to change the number of episodes. While it will not produce any bugs in the main branch as well, the argument will have no effect.

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill --num_episodes 100

Plug-and-Play New Agents from Local Host

Running Agents

Suppose one has some implementations of navigation agents that are not yet pushed to agents/. These could be tested on-the-fly using a handy script provided in scripts. First, put all the agent implementations inside extern_agents/, similar to implementations in agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent.sh new_agent

Make sure the agents are located in the extern_agents/ folder. This way, there is no need to directly hassle with docker; docker is merely used as a black box for running evaluations.

Now suppose one needs to debug the agent in the docker environment. This could be done by running the following script; it will open bash with extern_agents/ mounted.

./scripts/test_docker_agent_bash.sh

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) provided.

./scripts/extern_eval.sh new_agent

Playing Agent Episodes with Video

Agent trajectories per episode can be visualized with the scripts in scripts/. Again, put all the agent implementations inside extern_agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent_video.sh new_agent 

Make sure the mount paths are set correctly inside ./scripts/test_docker_agent_video.sh.

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) and video save directory (in this case ./test_dir) provided.

./scripts/extern_eval_video.sh new_agent ./test_dir

Caveats

The original implementations assume two GPUs to be given. Therefore bugs may occur if only a single GPU is present. In this case do not run the docker scripts directly, as it will return errors. Instead, connect to a docker container with bash and first modify the baseline .yaml configuration so that it only uses a single GPU. Then, run the *_eval*.sh scripts. I am planning on remedying this issue with a similar plug-and-play fashion, but for the time being, stick to this procedure.

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022