NeurIPS 2021, self-supervised 6D pose on category level

Overview

SE(3)-eSCOPE

video | paper | website

Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation

Xiaolong Li, Yijia Weng, Li Yi , Leonidas Guibas, A. Lynn Abbott, Shuran Song, He Wang

NeurIPS 2021

SE(3)-eSCOPE is a self-supervised learning framework to estimate category-level 6D object pose from single 3D point clouds, with no ground-truth pose annotations, no GT CAD models, and no multi-view supervision during training. The key to our method is to disentangle shape and pose through an invariant shape reconstruction module and an equivariant pose estimation module, empowered by SE(3) equivariant point cloud networks and reconstruction loss.

News

[2021-11] We release the training code for 5 categories.

Prerequisites

The code is built and tested with following libraries:

  • Python>=3.6
  • PyTorch/1.7.1
  • gcc>=6.1.0
  • cmake
  • cuda/11.0.1, or cuda/11.1 for newer GPUs
  • cudnn

Recommended Installation

# 1. install python environments
conda create --name equi-pose python=3.6
source activate equi-pose
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt

# 2. compile extra CUDA libraries
bash build.sh

Data Preparation

You could find the subset we use for ModelNet40 directly [drive_link], and our rendered depth point clouds dataset [drive_link], download and put them into your own 'data' folder. check global_info.py for codes and data paths.

Training

You may run the following code to train the model from scratch:

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category]

For example, to train the model on completet airplane, you may run

python main.py exp_num='1.0' training="complete_pcloud" dataset="modelnet40_complete" category='airplane' use_wandb=True

Testing Pretrained Models

Some of our pretrained checkpoints have been released, check [drive_link]. Put them in the 'second_path/models' folder. You can run the following command to test the performance;

python main.py exp_num=[experiment_id] training=[name_training] datasets=[name_dataset] category=[name_category] eval=True save=True

For example, to test the model on complete airplane category or partial airplane, you may run

python main.py exp_num='0.813' training="complete_pcloud" dataset="modelnet40_complete" category='airplane'
eval=True save=True
python main.py exp_num='0.913r' training="partial_pcloud" dataset="modelnet40_partial" category='airplane' eval=True save=True

Note: add "use_fps_points=True" to get slightly better results; for your own datasets, add 'pre_compute_delta=True' and use example canonical shapes to compute pose misalignment first.

Visualization

Check out my script demo.py or teaser.py for some hints.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{li2021leveraging,
    title={Leveraging SE (3) Equivariance for Self-supervised Category-Level Object Pose Estimation from Point Clouds},
    author={Li, Xiaolong and Weng, Yijia and Yi, Li and Guibas, Leonidas and Abbott, A Lynn and Song, Shuran and Wang, He},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021}
  }

We thank Haiwei Chen for the helpful discussions on equivariant neural networks.

Owner
Xiaolong
PhD student in Computer Vision, Virginia Tech
Xiaolong
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaƫl Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaƫl Defferrard 1.8k Dec 29, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022