[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

Related tags

Deep LearningMosaicKD
Overview

MosaicKD

Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data"

1. Motivation

Natural images share common local patterns. In MosaicKD, these local patterns are first dissembled from OOD data and then assembled to synthesize in-domain data, making OOD-KD feasible.

2. Method

MosaicKD establishes a four-player minimax game between a generator G, a patch discriminator D, a teacher model T and a student model S. The generator, as those in prior GANs, takes as input a random noise vector and learns to mosaic synthetic in-domain samples with locally-authentic and globally-legitimate distributions, under the supervisions back-propagated from the other three players.

3. Reproducing our results

3.1 Prepare teachers

Please download our pre-trained models from Dropbox (266 M) and extract them as "checkpoints/pretrained/*.pth". You can also train your own models as follows:

python train_scratch.py --lr 0.1 --batch-size 256 --model wrn40_2 --dataset cifar100

3.2 OOD-KD: CIFAR-100 (ID) + CIFAR10 (OOD)

  • Vanilla KD (Blind KD)

    python kd_vanilla.py --lr 0.1 --batch-size 128 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --gpu 0 
  • Data-Free KD (DFQAD)

    python kd_datafree.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0
  • MosaicKD (This work)

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0

3.3 OOD-KD: CIFAR-100 (ID) + ImageNet/Places365 OOD Subset (OOD)

  • Prepare 32x32 datasets
    Please prepare the 32x32 ImageNet following the instructions from https://patrykchrabaszcz.github.io/Imagenet32/ and extract them as "data/ImageNet_32x32/train" and "data/ImageNet_32x32/val". You can prepare Places365 in the same way.

  • MosaicKD on OOD subset
    As ImageNet & Places365 contain a large number of in-domain samples, we construct OOD subset for training. Please run the scripts with ''--ood_subset'' to enable subset selection.

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --ood_subset --gpu 0

4. Visualization of synthetic data

5. Citation

If you found this work useful for your research, please cite our paper:

@article{fang2021mosaicking,
  title={Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data},
  author={Gongfan Fang and Yifan Bao and Jie Song and Xinchao Wang and Donglin Xie and Chengchao Shen and Mingli Song},
  journal={arXiv preprint arXiv:2110.15094},
  year={2021}
}
Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022