[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

Related tags

Deep LearningMosaicKD
Overview

MosaicKD

Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data"

1. Motivation

Natural images share common local patterns. In MosaicKD, these local patterns are first dissembled from OOD data and then assembled to synthesize in-domain data, making OOD-KD feasible.

2. Method

MosaicKD establishes a four-player minimax game between a generator G, a patch discriminator D, a teacher model T and a student model S. The generator, as those in prior GANs, takes as input a random noise vector and learns to mosaic synthetic in-domain samples with locally-authentic and globally-legitimate distributions, under the supervisions back-propagated from the other three players.

3. Reproducing our results

3.1 Prepare teachers

Please download our pre-trained models from Dropbox (266 M) and extract them as "checkpoints/pretrained/*.pth". You can also train your own models as follows:

python train_scratch.py --lr 0.1 --batch-size 256 --model wrn40_2 --dataset cifar100

3.2 OOD-KD: CIFAR-100 (ID) + CIFAR10 (OOD)

  • Vanilla KD (Blind KD)

    python kd_vanilla.py --lr 0.1 --batch-size 128 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --gpu 0 
  • Data-Free KD (DFQAD)

    python kd_datafree.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0
  • MosaicKD (This work)

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --gpu 0

3.3 OOD-KD: CIFAR-100 (ID) + ImageNet/Places365 OOD Subset (OOD)

  • Prepare 32x32 datasets
    Please prepare the 32x32 ImageNet following the instructions from https://patrykchrabaszcz.github.io/Imagenet32/ and extract them as "data/ImageNet_32x32/train" and "data/ImageNet_32x32/val". You can prepare Places365 in the same way.

  • MosaicKD on OOD subset
    As ImageNet & Places365 contain a large number of in-domain samples, we construct OOD subset for training. Please run the scripts with ''--ood_subset'' to enable subset selection.

    python kd_mosaic.py --lr 0.1 --batch-size 256 --teacher wrn40_2 --student wrn16_1 --dataset cifar100 --unlabeled cifar10 --epoch 200 --lr 0.1 --local 1 --align 1 --adv 1 --balance 10 --ood_subset --gpu 0

4. Visualization of synthetic data

5. Citation

If you found this work useful for your research, please cite our paper:

@article{fang2021mosaicking,
  title={Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data},
  author={Gongfan Fang and Yifan Bao and Jie Song and Xinchao Wang and Donglin Xie and Chengchao Shen and Mingli Song},
  journal={arXiv preprint arXiv:2110.15094},
  year={2021}
}
Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022