A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

Overview

RE2

This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflow implementation: https://github.com/alibaba-edu/simple-effective-text-matching.

Quick Links

Simple and Effective Text Matching

RE2 is a fast and strong neural architecture for general purpose text matching applications. In a text matching task, a model takes two text sequences as input and predicts their relationship. This method aims to explore what is sufficient for strong performance in these tasks. It simplifies many slow components which are previously considered as core building blocks in text matching, while keeping three key features directly available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features.

RE2 achieves performance on par with the state of the art on four benchmark datasets: SNLI, SciTail, Quora and WikiQA, across tasks of natural language inference, paraphrase identification and answer selection with no or few task-specific adaptations. It has at least 6 times faster inference speed compared to similarly performed models.

The following table lists major experiment results. The paper reports the average and standard deviation of 10 runs. Inference time (in seconds) is measured by processing a batch of 8 pairs of length 20 on Intel i7 CPUs. The computation time of POS features used by CSRAN and DIIN is not included.

Model SNLI SciTail Quora WikiQA Inference Time
BiMPM 86.9 - 88.2 0.731 0.05
ESIM 88.0 70.6 - - -
DIIN 88.0 - 89.1 - 1.79
CSRAN 88.7 86.7 89.2 - 0.28
RE2 88.9±0.1 86.0±0.6 89.2±0.2 0.7618 ±0.0040 0.03~0.05

Refer to the paper for more details of the components and experiment results.

Setup

Data used in the paper are prepared as follows:

SNLI

  • Download and unzip SNLI (pre-processed by Tay et al.) to data/orig.
  • Unzip all zip files in the "data/orig/SNLI" folder. (cd data/orig/SNLI && gunzip *.gz)
  • cd data && python prepare_snli.py

SciTail

  • Download and unzip SciTail dataset to data/orig.
  • cd data && python prepare_scitail.py

Quora

  • Download and unzip Quora dataset (pre-processed by Wang et al.) to data/orig.
  • cd data && python prepare_quora.py

WikiQA

  • Download and unzip WikiQA to data/orig.
  • cd data && python prepare_wikiqa.py
  • Download and unzip evaluation scripts. Use the make -B command to compile the source files in qg-emnlp07-data/eval/trec_eval-8.0. Move the binary file "trec_eval" to resources/.

Usage

To train a new text matching model, run the following command:

python train.py $config_file.json5

Example configuration files are provided in configs/:

  • configs/main.json5: replicate the main experiment result in the paper.
  • configs/robustness.json5: robustness checks
  • configs/ablation.json5: ablation study

The instructions to write your own configuration files:

[
    {
        name: 'exp1', // name of your experiment, can be the same across different data
        __parents__: [
            'default', // always put the default on top
            'data/quora', // data specific configurations in `configs/data`
            // 'debug', // use "debug" to quick debug your code  
        ],
        __repeat__: 5,  // how may repetitions you want
        blocks: 3, // other configurations for this experiment 
    },
    // multiple configurations are executed sequentially
    {
        name: 'exp2', // results under the same name will be overwritten
        __parents__: [
            'default', 
            'data/quora',
        ],
        __repeat__: 5,  
        blocks: 4, 
    }
]

To check the configurations only, use

python train.py $config_file.json5 --dry

To evaluate an existed model, use python evaluate.py $model_path $data_file, here's an example:

python evaluate.py models/snli/benchmark/best.pt data/snli/train.txt 
python evaluate.py models/snli/benchmark/best.pt data/snli/test.txt 

Note that multi-GPU training is not yet supported in the pytorch implementation. A single 16G GPU is sufficient for training when blocks < 5 with hidden size 200 and batch size 512. All the results reported in the paper except the robustness checks can be reproduced with a single 16G GPU.

Citation

Please cite the ACL paper if you use RE2 in your work:

@inproceedings{yang2019simple,
  title={Simple and Effective Text Matching with Richer Alignment Features},
  author={Yang, Runqi and Zhang, Jianhai and Gao, Xing and Ji, Feng and Chen, Haiqing},
  booktitle={Association for Computational Linguistics (ACL)},
  year={2019}
}

License

This project is under Apache License 2.0.

Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
202 Jan 06, 2023
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022