Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Related tags

Deep LearningPASF
Overview

Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Beining Han,   Chongyi Zheng,   Harris Chan,   Keiran Paster,   Michael R. Zhang,   Jimmy Ba

paper

Summary: Deep Reinforcement Learning agents often face unanticipated environmental changes after deployment in the real world. These changes are often spurious and unrelated to the underlying problem, such as background shifts for visual input agents. Unfortunately, deep RL policies are usually sensitive to these changes and fail to act robustly against them. This resembles the problem of domain generalization in supervised learning. In this work, we study this problem for goal-conditioned RL agents. We propose a theoretical framework in the Block MDP setting that characterizes the generalizability of goal-conditioned policies to new environments. Under this framework, we develop a practical method PA-SkewFit (PASF) that enhances domain generalization.

@article{han2021learning,
  title={Learning Domain Invariant Representations in Goal-conditioned Block MDPs},
  author={Han, Beining and Zheng, Chongyi and Chan, Harris and Paster, Keiran and Zhang, Michael and Ba, Jimmy},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Installation

Our code was adapted from rlkit and was tested on a Ubuntu 20.04 server.

This instruction assumes that you have already installed NVIDIA driver, Anaconda, and MuJoCo.

You'll need to get your own MuJoCo key if you want to use MuJoCo.

1. Create Anaconda environment

Install the included Anaconda environment

$ conda env create -f environment/pasf_env.yml
$ source activate pasf_env
(pasf_env) $ python

2. Download the goals

Download the goals from the following link and put it here: (PASF DIR)/multiworld/envs/mujoco.

$ ls (PASF DIR)/multiworld/envs/mujoco
... goals ... 
  1. (Optional) Speed up with GPU rendering

3. (Optional) Speed-up with GPU rendering

Note: GPU rendering for mujoco-py speeds up training a lot but consumes more GPU memory at the same time.

Check this Issues:

Remember to do this stuff with the mujoco-py package inside of your pasf_env.

Running Experiments

The following command run the PASF experiments for the four tasks: Reach, Door, Push, Pickup, in the learning curve respectively.

$ source activate pasf_env
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_reach_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_door_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_push_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_pickup_lc_exp.bash
  • The bash scripts only set equation, equation, and equation with the exact values we used for LC. But you can play with other hyperparameters in python scripts under (PASF DIR)/experiment.

  • Training and evaluation environments are chosen in python scripts for each task. You can find the backgrounds in (PASF DIR)/multiworld/core/background and domains in (PASF DIR)/multiworld/envs/assets/sawyer_xyz.

  • Results are recorded in progress.csv under (PASF DIR)/data/ and variant.json contains configuration for each experiment.

  • We simply set random seeds as 0, 1, 2, etc., and run experiments with 6-9 different seeds for each task.

  • Error and output logs can be found in (PASF DIR)/terminal_log.

Questions

If you have any questions, comments, or suggestions, please reach out to Beining Han ([email protected]) and Chongyi Zheng ([email protected]).

Owner
Chongyi Zheng
Chongyi Zheng
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022