Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

Related tags

Deep Learningconsec
Overview

ConSeC

PWC

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words.

ConSeC Image

If you find our paper, code or framework useful, please reference this work in your paper:

@inproceedings{barba-etal-2021-consec,
    title = "{C}on{S}e{C}: Word Sense Disambiguation as Continuous Sense Comprehension",
    author = "Barba, Edoardo  and
      Procopio, Luigi  and
      Navigli, Roberto",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.112",
    pages = "1492--1503",
}

Setup Env

Requirements:

  • Debian-based (e.g. Debian, Ubuntu, ...) system
  • conda installed

Run the following command to quickly setup the env needed to run our code:

bash setup.sh

It's a bash command that will setup a conda environment with everything you need. Just answer the prompts as you proceed.

Finally, download the following resources:

  • Wikipedia Freqs. This is a compressed folder containing the files needed to compute the PMI score. Once downloaded, place the file inside data/ and run:
    cd data/
    tar -xvf pmi.tar.gz
    rm pmi.tar.gz
    cd ..
  • optionally, you can download the checkpoint trained on Semcor only that achieves 82.0 on ALL; place it inside the experiments/ folder (we recommend experiments/released-ckpts/)

Train

This is a PyTorch Lightning project with hydra configurations files, so most of the training parameters (e.g. datasets, optimizer, model, ...) are specified in yaml files. If you are not familiar with hydra and want to play a bit with training new models, we recommend going first through hydra tutorials; otherwise, you can skip this section (but you should still checkout hydra as it's an amazing piece of software!).

Anyway, training is done via the training script, src/scripts/model/train.py, and its parameters are read from the .yaml files in the conf/ folders (but for the conf/test/ folder which is used for evaluation). Once you applied all your desired changes, you can run the new training with:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/train.py

Evaluate

Evaluation is similarly handled via hydra configuration files, located in the conf/test/ folder. There's a single file there, which specifies how to evaluate (e.g. model checkpoint and test to use) against the framework of Raganato et al. (2017) (we will include XL-WSD, along with its checkpoints, later on). Parameters are quite self-explanatory and you might be most interested in the following ones:

  • model.model_checkpoint: path to the target checkpoint to use
  • test_raganato_path: path to the test file to evaluate against

To make a practical example, to evaluate the checkpoint we released against SemEval-2007, run the following command:

(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/raganato_evaluate.py model.model_checkpoint=experiments/released-ckpts/consec_semcor_normal_best.ckpt test_raganato_path=data/WSD_Evaluation_Framework/Evaluation_Datasets/semeval2007/semeval2007

NOTE: test_raganato_path expects what we refer to as a raganato path, that is, a prefix path such that both {test_raganato_path}.data.xml and {test_raganato_path}.gold.key.txt exist (and have the same role as in the standard evaluation framework).

Interactive Predict

We also implemented an interactive predict that allows you to query the model interactively; given as input:

  • a word in a context
  • its candidate definitions
  • its context definitions the model will disambiguate the target word. Check it out with:
(consec) [email protected]:~/consec$ PYTHONPATH=$(pwd) python src/scripts/model/predict.py experiments/released-ckpts/consec_semcor_normal_best.ckpt -t
Enter space-separated text: I have a beautiful dog
Target position: 4
Enter candidate lemma-def pairs. " --- " separated. Enter to stop
 * dog --- a member of the genus Canis
 * dog --- someone who is morally reprehensible
 * 
Enter context lemma-def-position tuples. " --- " separated. Position should be token position in space-separated input. Enter to stop
 * beautiful --- delighting the senses or exciting intellectual or emotional admiration --- 3
 * 
        # predictions
                 * 0.9939        dog     a member of the genus Canis 
                 * 0.0061        dog     someone who is morally reprehensible 

The scores assigned to each prediction are their probabilities.

Acknowledgments

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the Department of Computer Science of the Sapienza University of Rome.

License

This work is under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022