PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Overview

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding

PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding

To appear in MICCAI Brain Lesion Workshop 2021 (ORAL)

[publication] [arxiv] [poster] [talk]

Model have been tested on Ubuntu 16.04, 20.04 using Python 3.6, 3.7, PyTorch 1.7.0, 1.7.1

Authors: Alex Wong, Allison Chen, Yangchao Wu, Safa Cicek, Alexandre Tiard

If this work is useful to you, please cite our paper (to be updated from preprint to MICCAI):

@article{wong2021small,
  title={Small Lesion Segmentation in Brain MRIs with Subpixel Embedding},
  author={Wong, Alex and Chen, Allison and Wu, Yangchao and Cicek, Safa and Tiard, Alexandre and Hong, Byung-Woo and Soatto, Stefano},
  journal={arXiv preprint arXiv:2109.08791},
  year={2021}
}

Table of Contents

  1. About ischemic strokes
  2. About stroke lesion segmentation
  3. About Subpixel Network (SPiN)
  4. Setting up
  5. Downloading pretrained models
  6. Running SPiN
  7. Training SPiN
  8. Running and training related works
  9. License and disclaimer

About ischemic strokes

Ischemic strokes occur when a lack of blood flow prevents brain tissue from receiving adequate oxygen and nutrients and affect approximately 795,000 people annually. It’s currently the 5th leading cause of death in the United States and even upon recovery, many patients suffer from disability and even paralysis.

The severity of which is dependent on the size, location, and overlap of the lesions (caused by the stroke) with brain structures., but can be reduced with early diagnosis. Thus, preserving cognitive and motor function is dependent on identifying stroke lesions quickly and precisely, but doing so manually requires expert knowledge and is prohibitively time consuming. Here are some examples of manually traced lesions.

About stroke lesion segmentation

We focus on automatically identifying or segmenting ischemic stroke lesions from anatomical MRI images. Existing methods leverage deep convolutional neural networks that take as input an MRI image and output a heat or range map of confidence scores corresponding to lesion tissues. These lesions are often characterized by high variability in location, shape, and size. The latter two are problematic for conventional convolutional neural networks where the precision of irregularly shaped lesion boundaries and recall of small lesions are critical measures of success -- existing methods are able to capture the general shape of the large and medium sized lesions, but missed small ones and the intricacies in the boundary between lesion and normal tissue (see figure below).

Because deep neural networks are comprise of fixed sized filters with limited receptive fields that filters operate locally, in order to obtain a global representation of the input, one must employ spatial downsampling by the means of max pooling or strided convolutions. This is often performed aggressively so that the design does not limit applicability. Hence, the bottleneck or latent vector is typically much smaller in spatial dimensions than the input, which means that the details of fine local structures are lost in the process.

About Subpixel Network (SPiN)

To address this, we propose to learn an embedding that maps the input MRI image to high dimensional feature maps at double the input resolution where a single element or pixel in the image is represented by four subpixel feature vectors. Our subpixel embedding is comprised of a feature extraction phase using ResNet blocks and a spatial expansion phase that is achieved by rearranging elements from the channel dimension to the height and width dimensions using a depth to space operator.

Here we show the feature maps outputted by our subpixel embedding -- the high resolution feature maps contains anatomical structures that resembles the low resolution input MRI image.

This is particularly interesting because there is no explicit constraints on the structure of the learned representation. We note that we only minimize cross entropy, but our subpixel embedding naturally learns to preserve the details of the input as high resolution feature maps.

Unlike the typical architecture, we do not perform any lossy downsampling on this representation; hence, the embedding can preserve fine details of local structures, but in exchange, it lacks global context. But when combined with the standard encoder-decoder architecture, our subpixel embedding complements the decoder by guiding it with fine-grained local information that is lost during the encoding process so that the network can resolve detailed structures in the output segmentation. We refer to this architecture as a subpixel network or SPiN for short.

Unlike previous works, SPiN predicts an initial segmentation map at twice the input resolution where a single pixel in the input is predicted by a two by two neighborhood of subpixels in our output. The final segmentation at the original input resolution is obtained by combining the four subpixel predictions (akin to an ensemble) as a weighted sum where the contribution of each subpixel in a local neighborhood is predicted by a learnable downsampler.

Our learnable downsampler performs space-to-depth on the initial high resolution segmentation map and on each of channel of latent vector to rearrange each 2 by 2 neighborhood into a 4 element vector. This is followed by several convolutions and a softmax on the latent vector to learn the contribution or weight of each subpixel. The final segmentation at the input resolution is obtained by an element-wise dot product between the weights and the high resolution segmentation map.

Unlike hand crafted downsampling methods such as bilinear or nearest-neighbor interpolation where the weights are predetermined and independent of the input, our learnable downsampler is directly conditioned on the latent vector of the input and its initial segmentation. Hence it is able to predict weights that better respect lesion boundaries to yield detailed segmentation. Here we show qualitative comparisons on the ATLAS dataset.

Setting up your virtual environment

We will create a virtual environment with the necessary dependencies

virtualenv -p /usr/bin/python3.7 spin-py37env
source spin-py37env/bin/activate
pip install opencv-python scipy scikit-learn scikit-image matplotlib nibabel gdown numpy Pillow
pip install torch==1.7.1 torchvision==0.8.2 tensorboard==2.3.0

Setting up your datasets

For datasets, we will use the Anatomical Tracings of Lesion After Stroke (ATLAS) public dataset. You will need to sign an usage agreement in order to download the dataset. Please visit their dataset page, follow the instructions (sign a form and email it to the maintainers) to obtain the data, and save them on your machine.

Our repository provides the training and testing (referred to as traintest) data split in the data_split folder. The setup script will create numpy (.npy) files from .nii files provided in the raw dataset. It will also create training and validation directories containing text (.txt) files with relative paths to all data samples.

Assuming you are in the root of your repository, follow these command to setup the data:

# Create a data folder
mkdir data
ln -s /path/to/atlas data/

# Activate the virtual environment
source spin-py37env/bin/activate

# Set up the dataset
python setup/setup_dataset_atlas.py

Additionally, please run the following for the small lesion subset discussed in our paper:

python setup/setup_dataset_atlas_small_lesion.py

Downloading our pretrained models

To use pretrained models trained on ATLAS, please use gdown to download the zip file from our Google Drive.

# Download with gdown
gdown https://drive.google.com/uc?id=1ZSeLeNT-LX1n4QR-r8fVzHk3KmufSps_

# Unzip to directory
unzip pretrained_models.zip

This will output a pretrained_models directory containing the checkpoint for our model. For the ease of future comparisons between different works, we also provide checkpoints for various methods compared in our paper. All models are trained on the proposed training and testing split on ATLAS. The directory will have the following structure:

pretrained_models
|---- spin
      |---- spin_atlas_traintest.pth
|---- u-net
      |---- unet_atlas_traintest.pth
.
.
.

|---- kiu-net
      |---- kiunet_atlas_traintest.pth

Note: gdown fails intermittently and complains about permission. If that happens, you may also download the models via:

https://drive.google.com/file/d/1ZSeLeNT-LX1n4QR-r8fVzHk3KmufSps_/view?usp=sharing

Running SPiN

To run SPiN on the provided data splits (training, testing, small lesion subset), you may use our evaluation bash scripts located in the bash/spin directory.

To evaluate our pretrained model on our training and testing split:

bash bash/spin/evaluate/evaluate_spin_traintest.sh

The checkpoint should produce numbers consistent with Table 2 from our main paper:

Model DSC IOU Precision Recall
U-Net 0.584 0.432 0.674 0.558
D-UNet 0.548 0.404 0.652 0.521
CLCI-Net 0.599 0.469 0.741 0.536
KiU-Net 0.524 0.387 0.703 0.459
X-Net 0.639 0.495 0.746 0.588
SPiN (Ours) 0.703 0.556 0.806 0.654

To evaluate our pretrained model on our small lesion subset:

bash bash/spin/evaluate/evaluate_spin_small_lesion.sh

The checkpoint should produce numbers consistent with Table 3 from our main paper:

Model DSC IOU Precision Recall
U-Net 0.368 0.225 0.440 0.316
D-UNet 0.265 0.180 0.377 0.264
CLCI-Net 0.246 0.178 0.662 0.215
KiU-Net 0.246 0.255 0.466 0.206
X-Net 0.306 0.213 0.546 0.268
SPiN (Ours) 0.424 0.269 0.546 0.347

Note: You may replace the restore_path argument in these bash scripts to evaluate your own checkpoints.

By default, our evaluation scripts activate the flag --do_visualize_predictions. In addition to logging the evaluation summary in the checkpoint path directory, this will create a subdirectory called atlas_test_scans with the ground truths and predictions for each 2D image for visualization purposes. For quicker evaluation, you may remove this argument from the bash scripts.

Training SPiN

To train our method on ATLAS, you can directly run:

bash bash/spin/train/train_spin_traintest.sh

The bash script assumes that you are only using one GPU (CUDA_VISIBLE_DEVICES=0). To use multiple GPUs (if you want to train on a different dataset with larger images or using a larger batch size), you can modify the bash script with

export CUDA_VISIBLE_DEVICES=0,1

to use two GPUs.

Additionally, if you would like to train SPiN on your own dataset using our dataloader (src/datasets.py), you will need to convert your data into numpy (.npy) files and create files containing paths to each data sample as done in setup/setup_dataset_atlas.py.

Finally to monitor your training progress (training loss, visualizations, etc.), you can use tensorboard:

tensorboard --logdir trained_spin_models/<model_name>

Note: the frequency of logging tensorboard summaries and storing checkpoints are controlled by the n_summary and n_checkpoint arguments.

Running and training related works

To run the works we compare to on the provided data splits (training, testing, small lesion subset), you may use our evaluation bash scripts located in the bash directory. All of the checkpoints were the best (amongst several runs) produced by the methods below and should reproduce the numbers in the tables above (Table 2, 3 in main text).

U-Net

To evaluate the U-Net model the testing set:

bash bash/u-net/evaluate/evaluate_unet_traintest.sh

To evaluate the U-Net model on our small lesion subset:

bash bash/u-net/evaluate/evaluate_unet_small_lesion.sh

To train U-Net model on ATLAS on the proposed training and testing split:

bash bash/u-net/train/train_unet_traintest.sh

License and disclaimer

This software is property of the UC Regents, and is provided free of charge for research purposes only. It comes with no warranties, expressed or implied, according to these terms and conditions. For commercial use, please contact UCLA TDG.

Owner
I am a post-doctoral researcher at the UCLA Vision Lab under the supervision of Professor Stefano Soatto.
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023