Predicting Event Memorability from Contextual Visual Semantics

Overview

Predicting-Event-Memorability-from-Contextual-Visual-Semantics

This repository contains pytorch implementation of five configurations in our paper "Predicting Event Memorability from Contextual Visual Semantics".

  1. Raw images are to be put in '../datasets/r3/images/'
  2. Train and validation (val) splits for different configurations are under '../datasets/r3/splits/'; the set of train_1.txt, val_1.txt, etc. contains image names and memorability scores for the respective split.
  3. Configurations of ablation study are with individual folders, e.g., './no_face', './no_activity', etc. './full_set' is for full configuration without removing features.
  4. Complete extrinsic features and the memory test outcome is available in 'R3_data.csv' file. Description of the features is given in 'R3_data_notes.txt'. Both can be downloaded together with the original image cues @ https://drive.google.com/drive/folders/1Bx_ePv7ui6DCIXkESCpoyuvd0H3B9o6d?usp=sharing
  5. The AMNet implementation is adpated from https://github.com/ok1zjf/AMNet

########################################################################################

To train AMNet and CEMNet_wt_AMNet:

python3 main.py --train-batch-size 128 --test-batch-size 128 --cnn ResNet50FC --dataset lamem --train-split train_1 --val-split val_1

To predict:

python3 main.py --cnn ResNet50FC --model-weights /path/to/model/weights_xx.pkl --eval-images /path/to/evl_images --csv-out memorabilities.txt

To train other models (ICNet, MLP, CEMNet_wt_ICNet):

[Go the the respective folder, e.g., '../ICNet']

python main.py

To predict (please select corresponding splits and model in predict.py):

python predict.py

[Where necessary, change Dataset.py to the corresponding directory of split]

########################################################################################

System configuration:

platform: UBUNTU 16.04

GPU: GeForce GTX 1080

CUDA:9.0

########################################################################################

Python packages:

python 3.5.6

pytorch 0.2.0

Torchvison 0.1.9

Numpy 1.15.2

Opencv 3.1.0

PIL 6.1.0

########################################################################################

To cite the paper: Xu Q., Fang F., del Molino A.G, Subbaraju V., Lim J.H., Predicting Event Memorability from Contextual Visual Semantics, NeurIPS 2021.

If you have any questions, please feel free to contact Dr Xu Qianli: [email protected]

๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning ๐Ÿ†— ๐Ÿ†— ๐ŸŽ‰ NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Imagededup - ๐Ÿ˜Ž Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022