Predicting Event Memorability from Contextual Visual Semantics

Overview

Predicting-Event-Memorability-from-Contextual-Visual-Semantics

This repository contains pytorch implementation of five configurations in our paper "Predicting Event Memorability from Contextual Visual Semantics".

  1. Raw images are to be put in '../datasets/r3/images/'
  2. Train and validation (val) splits for different configurations are under '../datasets/r3/splits/'; the set of train_1.txt, val_1.txt, etc. contains image names and memorability scores for the respective split.
  3. Configurations of ablation study are with individual folders, e.g., './no_face', './no_activity', etc. './full_set' is for full configuration without removing features.
  4. Complete extrinsic features and the memory test outcome is available in 'R3_data.csv' file. Description of the features is given in 'R3_data_notes.txt'. Both can be downloaded together with the original image cues @ https://drive.google.com/drive/folders/1Bx_ePv7ui6DCIXkESCpoyuvd0H3B9o6d?usp=sharing
  5. The AMNet implementation is adpated from https://github.com/ok1zjf/AMNet

########################################################################################

To train AMNet and CEMNet_wt_AMNet:

python3 main.py --train-batch-size 128 --test-batch-size 128 --cnn ResNet50FC --dataset lamem --train-split train_1 --val-split val_1

To predict:

python3 main.py --cnn ResNet50FC --model-weights /path/to/model/weights_xx.pkl --eval-images /path/to/evl_images --csv-out memorabilities.txt

To train other models (ICNet, MLP, CEMNet_wt_ICNet):

[Go the the respective folder, e.g., '../ICNet']

python main.py

To predict (please select corresponding splits and model in predict.py):

python predict.py

[Where necessary, change Dataset.py to the corresponding directory of split]

########################################################################################

System configuration:

platform: UBUNTU 16.04

GPU: GeForce GTX 1080

CUDA:9.0

########################################################################################

Python packages:

python 3.5.6

pytorch 0.2.0

Torchvison 0.1.9

Numpy 1.15.2

Opencv 3.1.0

PIL 6.1.0

########################################################################################

To cite the paper: Xu Q., Fang F., del Molino A.G, Subbaraju V., Lim J.H., Predicting Event Memorability from Contextual Visual Semantics, NeurIPS 2021.

If you have any questions, please feel free to contact Dr Xu Qianli: [email protected]

A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022