Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

Overview

PAWS-TF 🐾

Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS) in TensorFlow (2.4.1).

PAWS introduces a simple way to combine a very small fraction of labeled data with a comparatively larger corpus of unlabeled data during pre-training. With its approach, it sets the state-of-the-art in semi-supervised learning (as of May 2021) beating methods like SimCLRV2, Meta Pseudo Labels that too with fewer parameters and a smaller pre-training schedule. For details, I recommend checking out the original paper as well as this blog post by the authors.

This repository implements and includes all the major bits proposed in PAWS in TensorFlow. The only major difference is that the pre-training and subsequent fine-tuning weren't run for the original number of epochs (600 and 30 respectively) to save compute. I have reused the utility components for PAWS loss from the original implementation.

Dataset ⌗

The current code works with CIFAR10 and uses 4000 labeled samples (8%) during pre-training (along with the unlabeled samples).

Features

  • Multi-crop augmentation strategy (originally introduced in SwAV)
  • Class stratified sampler (common in few-shot classification problems)
  • WarmUpCosine learning rate schedule (which is typical for self-supervised and semi-supervised pre-training)
  • LARS optimizer (comes from TensorFlow Model Garden)

The trunk portion (all, except the last classification layer) of a WideResNet-28-2 is used inside the encoder for CIFAR10. All the experimental configurations were followed from the Appendix C of the paper.

Setup and code structure 💻

A GCP VM (n1-standard-8) with a single V100 GPU was used for executing the code.

  • paws_train.py runs the pre-training as introduced in PAWS.
  • fine_tune.py runs the fine-tuning part as suggested in Appendix C. Note that this is only required for CIFAR10.
  • nn_eval.py runs the soft nearest neighbor classification on CIFAR10 test set.

Pre-training and fine-tuning total take 1.4 hours to complete. All the logs are available in misc/logs.txt. Additionally, the indices that were used to sample the labeled examples from the CIFAR10 training set are available here.

Results 📊

Pre-training

PAWS minimizes the cross-entropy loss (as well as maximizes mean-entropy) during pre-training. This is what the training plot indicates too:

To evaluate the effectivity of the pre-training, PAWS performs soft nearest neighbor classification to report the top-1 accuracy score on a given test set.

Top-1 Accuracy

This repository gets to 73.46% top-1 accuracy on the CIFAR10 test set. Again, note that I only pre-trained for 50 epochs (as opposed to 600) and fine-tuned for 10 epochs (as opposed to 30). With the original schedule this score should be around 96.0%.

In the following PCA projection plot, we see that the embeddings of images (computed after fine-tuning) of PAWS are starting to be well separated:

Notebooks 📘

There are two Colab Notebooks:

Misc ⺟

  • Model weights are available here for reproducibility.
  • With mixed-precision training, the performance can further be improved. I am open to accepting contributions that would implement mixed-precision training in the current code.

Acknowledgements

  • Huge amount of thanks to Mahmoud Assran (first author of PAWS) for patiently resolving my doubts.
  • ML-GDE program for providing GCP credit support.

Paper Citation

@misc{assran2021semisupervised,
      title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
      author={Mahmoud Assran and Mathilde Caron and Ishan Misra and Piotr Bojanowski and Armand Joulin and Nicolas Ballas and Michael Rabbat},
      year={2021},
      eprint={2104.13963},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Releases(v1.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022