Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

Overview

PAWS-TF 🐾

Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS) in TensorFlow (2.4.1).

PAWS introduces a simple way to combine a very small fraction of labeled data with a comparatively larger corpus of unlabeled data during pre-training. With its approach, it sets the state-of-the-art in semi-supervised learning (as of May 2021) beating methods like SimCLRV2, Meta Pseudo Labels that too with fewer parameters and a smaller pre-training schedule. For details, I recommend checking out the original paper as well as this blog post by the authors.

This repository implements and includes all the major bits proposed in PAWS in TensorFlow. The only major difference is that the pre-training and subsequent fine-tuning weren't run for the original number of epochs (600 and 30 respectively) to save compute. I have reused the utility components for PAWS loss from the original implementation.

Dataset βŒ—

The current code works with CIFAR10 and uses 4000 labeled samples (8%) during pre-training (along with the unlabeled samples).

Features ✨

  • Multi-crop augmentation strategy (originally introduced in SwAV)
  • Class stratified sampler (common in few-shot classification problems)
  • WarmUpCosine learning rate schedule (which is typical for self-supervised and semi-supervised pre-training)
  • LARS optimizer (comes from TensorFlow Model Garden)

The trunk portion (all, except the last classification layer) of a WideResNet-28-2 is used inside the encoder for CIFAR10. All the experimental configurations were followed from the Appendix C of the paper.

Setup and code structure πŸ’»

A GCP VM (n1-standard-8) with a single V100 GPU was used for executing the code.

  • paws_train.py runs the pre-training as introduced in PAWS.
  • fine_tune.py runs the fine-tuning part as suggested in Appendix C. Note that this is only required for CIFAR10.
  • nn_eval.py runs the soft nearest neighbor classification on CIFAR10 test set.

Pre-training and fine-tuning total take 1.4 hours to complete. All the logs are available in misc/logs.txt. Additionally, the indices that were used to sample the labeled examples from the CIFAR10 training set are available here.

Results πŸ“Š

Pre-training

PAWS minimizes the cross-entropy loss (as well as maximizes mean-entropy) during pre-training. This is what the training plot indicates too:

To evaluate the effectivity of the pre-training, PAWS performs soft nearest neighbor classification to report the top-1 accuracy score on a given test set.

Top-1 Accuracy

This repository gets to 73.46% top-1 accuracy on the CIFAR10 test set. Again, note that I only pre-trained for 50 epochs (as opposed to 600) and fine-tuned for 10 epochs (as opposed to 30). With the original schedule this score should be around 96.0%.

In the following PCA projection plot, we see that the embeddings of images (computed after fine-tuning) of PAWS are starting to be well separated:

Notebooks πŸ“˜

There are two Colab Notebooks:

Misc ⺟

  • Model weights are available here for reproducibility.
  • With mixed-precision training, the performance can further be improved. I am open to accepting contributions that would implement mixed-precision training in the current code.

Acknowledgements

  • Huge amount of thanks to Mahmoud Assran (first author of PAWS) for patiently resolving my doubts.
  • ML-GDE program for providing GCP credit support.

Paper Citation

@misc{assran2021semisupervised,
      title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
      author={Mahmoud Assran and Mathilde Caron and Ishan Misra and Piotr Bojanowski and Armand Joulin and Nicolas Ballas and Michael Rabbat},
      year={2021},
      eprint={2104.13963},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Releases(v1.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty β’Έβ“„β“‹β’Ύβ’Ή-①⑨ (MyFirstCTF Only) Reverse Baby β˜… Piano Reverse C#, .NET β˜…

6 Oct 28, 2021
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022