Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

Overview

PAWS-TF 🐾

Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS) in TensorFlow (2.4.1).

PAWS introduces a simple way to combine a very small fraction of labeled data with a comparatively larger corpus of unlabeled data during pre-training. With its approach, it sets the state-of-the-art in semi-supervised learning (as of May 2021) beating methods like SimCLRV2, Meta Pseudo Labels that too with fewer parameters and a smaller pre-training schedule. For details, I recommend checking out the original paper as well as this blog post by the authors.

This repository implements and includes all the major bits proposed in PAWS in TensorFlow. The only major difference is that the pre-training and subsequent fine-tuning weren't run for the original number of epochs (600 and 30 respectively) to save compute. I have reused the utility components for PAWS loss from the original implementation.

Dataset ⌗

The current code works with CIFAR10 and uses 4000 labeled samples (8%) during pre-training (along with the unlabeled samples).

Features

  • Multi-crop augmentation strategy (originally introduced in SwAV)
  • Class stratified sampler (common in few-shot classification problems)
  • WarmUpCosine learning rate schedule (which is typical for self-supervised and semi-supervised pre-training)
  • LARS optimizer (comes from TensorFlow Model Garden)

The trunk portion (all, except the last classification layer) of a WideResNet-28-2 is used inside the encoder for CIFAR10. All the experimental configurations were followed from the Appendix C of the paper.

Setup and code structure 💻

A GCP VM (n1-standard-8) with a single V100 GPU was used for executing the code.

  • paws_train.py runs the pre-training as introduced in PAWS.
  • fine_tune.py runs the fine-tuning part as suggested in Appendix C. Note that this is only required for CIFAR10.
  • nn_eval.py runs the soft nearest neighbor classification on CIFAR10 test set.

Pre-training and fine-tuning total take 1.4 hours to complete. All the logs are available in misc/logs.txt. Additionally, the indices that were used to sample the labeled examples from the CIFAR10 training set are available here.

Results 📊

Pre-training

PAWS minimizes the cross-entropy loss (as well as maximizes mean-entropy) during pre-training. This is what the training plot indicates too:

To evaluate the effectivity of the pre-training, PAWS performs soft nearest neighbor classification to report the top-1 accuracy score on a given test set.

Top-1 Accuracy

This repository gets to 73.46% top-1 accuracy on the CIFAR10 test set. Again, note that I only pre-trained for 50 epochs (as opposed to 600) and fine-tuned for 10 epochs (as opposed to 30). With the original schedule this score should be around 96.0%.

In the following PCA projection plot, we see that the embeddings of images (computed after fine-tuning) of PAWS are starting to be well separated:

Notebooks 📘

There are two Colab Notebooks:

Misc ⺟

  • Model weights are available here for reproducibility.
  • With mixed-precision training, the performance can further be improved. I am open to accepting contributions that would implement mixed-precision training in the current code.

Acknowledgements

  • Huge amount of thanks to Mahmoud Assran (first author of PAWS) for patiently resolving my doubts.
  • ML-GDE program for providing GCP credit support.

Paper Citation

@misc{assran2021semisupervised,
      title={Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples}, 
      author={Mahmoud Assran and Mathilde Caron and Ishan Misra and Piotr Bojanowski and Armand Joulin and Nicolas Ballas and Michael Rabbat},
      year={2021},
      eprint={2104.13963},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Supplementary code for the paper
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Releases(v1.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022