Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Overview

This repository has been ⛔️ DEPRECATED. Please take a look at our fairly recent work:

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification [paper] [Code]

Deep Learning for Land-cover Classification in Hyperspectral Images

Hyperspectral images are images captured in multiple bands of the electromagnetic spectrum. This project is focussed at the development of Deep Learned Artificial Neural Networks for robust landcover classification in hyperspectral images. Land-cover classification is the task of assigning to every pixel, a class label that represents the type of land-cover present in the location of the pixel. It is an image segmentation/scene labeling task. The following diagram describes the task.



This website describes our explorations with the performance of Multi-Layer Perceptrons and Convolutional Neural Networks at the task of Land-cover Classification in Hyperspectral Images. Currently we perform pixel-wise classification.


Dataset =======

We have performed our experiments on the Indian Pines Dataset. The following are the particulars of the dataset:

  • Source: AVIRIS sensor
  • Region: Indian Pines test site over north-western Indiana
  • Time of the year: June
  • Wavelength range: 0.4 – 2.5 micron
  • Number of spectral bands: 220
  • Size of image: 145x145 pixel
  • Number of land-cover classes: 16

Input data format =================

Each pixel is described by an NxN patch centered at the pixel. N denotes the size of spatial context used for making the inference about a given pixel.

The input data was divided into training set (75%) and a test set (25%).

Hardware used

The neural networks were trained on a machine with dual Intel Xeon E5-2630 v2 CPUs, 32 GB RAM and NVIDIA Tesla K-20C GPU.


Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is an artificial neural network with one or more hidden layers of neurons. MLP is capable of modelling highly non-linear functions between the input and output and forms the basis of Deep-learning Neural Network (DNN) models.

Architecture of Multi-Layer Perceptron used

input- [affine - relu] x 3 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 200
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:


Convolutional Neural Network

(CNN or ConvNet) are a special category of artificial neural networks designed for processing data with a gridlike structure. The ConvNet architecture is based on sparse interactions and parameter sharing and is highly effective for efficient learning of spatial invariances in images. There are four kinds of layers in a typical ConvNet architecture: convolutional (conv), pooling (pool), fullyconnected (affine) and rectifying linear unit (ReLU). Each convolutional layer transforms one set of feature maps into another set of feature maps by convolution with a set of filters.

Architecture of Convolutional Neural Network used

input- [conv - relu - maxpool] x 2 - [affine - relu] x 2 - affine - softmax

(Schematic representation below)

Ndenotes the size of the input patch.


Specifics of the learning algorithm

The following are the details of the learning algorithm used:

  • Parameter update algorithm used: Adagrad

    • Batch size: 100
    • Learning rate: 0.01
  • Number of steps: until best validation performance


Performance

Decoding generated for different input patch sizes:



Description of the repository

  • IndianPines_DataSet_Preparation_Without_Augmentation.ipynb - does the following operations:

    • Loads the Indian Pines dataset
    • Scales the input between [0,1]
    • Mean normalizes the channels
    • Makes training and test splits
    • Extracts patches of given size
    • Oversamples the training set for balancing the classes
  • Spatial_dataset.py - provides a highly flexible Dataset class for handling the Indian Pines data.

  • patch_size.py - specify the required patch-size here.

  • IndianPinesCNN.ipynb- builds the TensorFlow Convolutional Neural Network and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • CNN_feed.ipynb - trains and evaluates the Neural Network using a feed dictionary

  • Decoder_Spatial_CNN.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • IndianPinesMLP.py - builds the TensorFlow Multi-layer Perceptron and defines the training and evaluation ops:

    • inference() - builds the model as far as is required for running the network forward to make predictions.
    • loss() - adds to the inference model the layers required to generate loss.
    • training() - adds to the loss model the Ops required to generate and apply gradients.
    • evaluation() - calcuates the classification accuracy
  • MLP_feed.ipynb - trains and evaluates the MLP using a feed dictionary

  • Decoder_Spatial_MLP.ipynb - generates the landcover classification of an input hyperspectral image for a given trained network

  • credibility.ipynb - summarizes the predictions of an ensemble and produces the land-cover classification and class-wise confusion matrix.


Setting up the experiment

  • Download the Indian Pines data-set from here.
  • Make a directory named Data within the current working directory and copy the downloaded .mat files Indian_pines.mat and Indian_pines_gt.mat in this directory.

In order to make sure all codes run smoothly, you should have the following directory subtree structure under your current working directory:

|-- IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
|-- Decoder_Spatial_CNN.ipynb
|-- Decoder_Spatial_MLP.ipynb
|-- IndianPinesCNN.ipynb
|-- CNN_feed.ipynb
|-- MLP_feed.ipynb
|-- credibility.ipynb
|-- IndianPinesCNN.py
|-- IndianPinesMLP.py
|-- Spatial_dataset.py
|-- patch_size.py
|-- Data
|   |-- Indian_pines_gt.mat
|   |-- Indian_pines.mat


  • Set the required patch-size value (eg. 11, 21, etc) in patch_size.py and run the following notebooks in order:
    1. IndianPines_DataSet_Preparation_Without_Augmentation.ipynb
    2. CNN_feed.ipynb OR MLP_feed.ipynb (specify the number of fragments in the training and test data in the variables TRAIN_FILES and TEST_FILES)
    3. Decoder_Spatial_CNN.ipynb OR Decoder_Spatial_MLP.ipynb (set the required checkpoint to be used for decoding in the model_name variable)

Outputs will be displayed in the notebooks.


Acknowledgement

This repository was developed by Anirban Santara, Ankit Singh, Pranoot Hatwar and Kaustubh Mani under the supervision of Prof. Pabitra Mitra during June-July, 2016 at the Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, India. The project is funded by Satellite Applications Centre, Indian Space Research Organization (SAC-ISRO).

Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022