The official implementation of the paper, "SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning"

Overview

SubTab:

Author: Talip Ucar ([email protected])

The official implementation of the paper,

SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning

PWC

Table of Contents:

  1. Model
  2. Environment
  3. Data
  4. Configuration
  5. Training and Evaluation
  6. Adding New Datasets
  7. Results
  8. Experiment tracking
  9. Citing the paper
  10. Citing this repo

Model

SubTab

Click for a slower version of the animation

SubTab

Environment

We used Python 3.7 for our experiments. The environment can be set up by following three steps:

pip install pipenv             # To install pipenv if you don't have it already
pipenv install --skip-lock     # To install required packages. 
pipenv shell                   # To activate virtual env

If the second step results in issues, you can install packages in Pipfile individually by using pip i.e. "pip install package_name".

Data

MNIST dataset is already provided to demo the framework. For your own dataset, follow the instructions in Adding New Datasets.

Configuration

There are two types of configuration files:

1. runtime.yaml
2. mnist.yaml
  1. runtime.yaml is a high-level configuration file used by all datasets to:

    • define the random seed
    • turn on/off mlflow (Default: False)
    • turn on/off python profiler (Default: False)
    • set data directory
    • set results directory
  2. Second configuration file is dataset-specific and is used to configure the architecture of the model, loss functions, and so on.

    • For example, we set up a configuration file for MNIST dataset with the same name. Please note that the name of the configuration file should be same as name of the dataset with all letters in lowercase.
    • We can have configuration files for other datasets such as tcga.yaml and income.yaml for tcga and income datasets respectively.

Training and Evaluation

You can train and evaluate the model by using:

python train.py # For training
python eval.py  # For evaluation
  • train.py will also run evaluation at the end of the training.
  • You can also run evaluation separately by using eval.py.

Adding New Datasets

For each new dataset, you can use the following steps:

  1. Provide a _load_dataset_name() function, similar to MNIST load function

    • For example, you can add _load_tcga() for tcga dataset, or _load_income() for income dataset.
    • The function should return (x_train, y_train, x_test, y_test)
  2. Add a separate elif condition in this section within _load_data() method of TabularDataset() class in utils/load_data.py

  3. Create a new config file with the same name as dataset name.

    • For example, tcga.yaml for tcga dataset, or income.yaml for income dataset.

    • You can also duplicate one of the existing configuration files (e.g. mnist.yaml), and re-name it.

    • Make sure that the new config file is under config/ directory.

  4. Provide data folder with pre-processed training and test set, and place it under ./data/ directory. You can also do train-test split and pre-processing within your custom _load_dataset_name() function.

  5. (Optional) If you want to place the new dataset under a different directory than the local "./data/", then:

    • Place the dataset folder anywhere, and define the root directory to it in this line of /config/runtime.yaml.

    • For example, if the path to tcga dataset is /home/.../data/tcga/, you only need to include /home/.../data/ in runtime.yaml. The code will fill in tcga folder name from the name given in the command line argument (e.g. -d dataset_name. In this case, dataset_name would be tcga).

Structure of the repo

- train.py
- eval.py

- src
    |-model.py
    
- config
    |-runtime.yaml
    |-mnist.yaml
    
- utils
    |-load_data.py
    |-arguments.py
    |-model_utils.py
    |-loss_functions.py
    ...
    
- data
    |-mnist
    ...
    
- results
    |
    ...

Results

Results at the end of training is saved under ./results directory. Results directory structure is as following:

- results
    |-dataset name
            |-evaluation
                |-clusters (for plotting t-SNE and PCA plots of embeddings)
                |-reconstructions (not used)
            |-training
                |-model_mode (e.g. ae for autoencoder)   
                     |-model
                     |-plots
                     |-loss

You can save results of evaluations under "evaluation" folder.

Experiment tracking

MLFlow is used to track experiments. It is turned off by default, but can be turned on by changing option on this line in runtime config file in ./config/runtime.yaml

Citing the paper

@article{ucar2021subtab,
  title={SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning},
  author={Ucar, Talip and Hajiramezanali, Ehsan and Edwards, Lindsay},
  journal={arXiv preprint arXiv:2110.04361},
  year={2021}
}

Citing this repo

If you use SubTab framework in your own studies, and work, please cite it by using the following:

@Misc{talip_ucar_2021_SubTab,
  author =   {Talip Ucar},
  title =    {{SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning}},
  howpublished = {\url{https://github.com/AstraZeneca/SubTab}},
  month        = June,
  year = {since 2021}
}
Owner
AstraZeneca
Data and AI: Unlocking new science insights
AstraZeneca
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Alex Pashevich 62 Dec 24, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022