RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

Related tags

Deep LearningRTS3D
Overview

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021).

RTS3D is efficiency and accuracy stereo 3D object detection method for autonomous driving.

RTS3D

Introduction

RTS3D is the first true real-time system (FPS>24) for stereo image 3D detection meanwhile achieves 10% improvement in average precision comparing with the previous state-of-the-art method. RTS3D only require RGB images without synthetic data, instance segmentation, CAD model, or depth generator.

Highlights

  • Fast: 33 FPS of single image test speed in KITTI benchmark with 384*1280 resolution
  • Accuracy: SOTA on the KITTI benchmark.
  • Anchor Free: No 2D or 3D anchor are reauired
  • Easy to deploy: RTS3D uses conventional convolution operations and MLP, so it is very easy to deploy and accelerate.

RTS3D Baseline and Model Zoo

All experiments are tested with Ubuntu 16.04, Pytorch 1.0.0, CUDA 9.0, Python 3.6, single NVIDIA 2080Ti

IoU Setting 1: Car IoU > 0.5, Pedestrian IoU > 0.25, Cyclist IoU > 0.25

IoU Setting 2: Car IoU > 0.7, Pedestrian IoU > 0.5, Cyclist IoU > 0.5

  • Training on KITTI train split and evaluation on val split.
Class Iteration FPS AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- - - Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car- Recall-11 1 90.9 89.83, 77.05, 68.28 89.27, 70.12, 61.17 73.20, 53.62, 46.44 60.87, 42.38, 36.44
Car- Recall-40 1 90.9 92.92, 76.17, 66.62 90.35, 71.37, 63.52 78.12, 54.75, 47.09 60.34, 39.32, 32.97
Car- Recall-11 2 45.5 90.41, 78.70, 70.03 90.26, 77.23, 68.28 76.56, 56.46, 48.20 63.65, 44.50, 37.48
Car- Recall-40 2 45.5 95.75, 79.61, 69.69 93.57, 76.64, 66.72 78.12, 54.75, 47.09 63.99, 41.78, 34.96
  • Training on KITTI train split and evaluation on val split.
    • FCE Space Resolution: 10 * 10 * 10
    • Recall split: 11
    • Iteration: 2
    • Model: (Google Drive), (Baidu Cloud 提取码:4t4u)
Class AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car 90.18, 78.46, 69.76 89.88, 76.64, 67.86 74.95, 54.07, 46.78 58.50, 39.74, 34.83
Pedestrian 57.12, 48.82, 40.88 56.36, 48.29, 40.22 32.16, 26.31, 21.28 26.95, 20.77, 19.74
Cyclist 54.48, 35.78, 30.80 53.86, 30.90, 30.52 33.59, 20.80, 20.14 31.05, 20.26, 18.93

Installation

Please refer to INSTALL.md

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

KM3DNet
├── kitti_format
│   ├── data
│   │   ├── kitti
│   │   |   ├── annotations
│   │   │   ├── calib /000000.txt .....
│   │   │   ├── image(left[0-7480] right[7481-14961] input augmentatiom)
│   │   │   ├── label /000000.txt .....
|   |   |   ├── train.txt val.txt trainval.txt
│   │   │   ├── mono_results /000000.txt .....
├── src
├── demo_kitti_format
├── readme
├── requirements.txt

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Acknowledgement

License

RTS3D is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from, CenterNet, iou3d and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{2012.15072,
Author = {Peixuan Li, Shun Su, Huaici Zhao},
Title = {RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving},
Year = {2020},
Eprint = {arXiv:2012.15072},
}
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022