RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

Related tags

Deep LearningRTS3D
Overview

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021).

RTS3D is efficiency and accuracy stereo 3D object detection method for autonomous driving.

RTS3D

Introduction

RTS3D is the first true real-time system (FPS>24) for stereo image 3D detection meanwhile achieves 10% improvement in average precision comparing with the previous state-of-the-art method. RTS3D only require RGB images without synthetic data, instance segmentation, CAD model, or depth generator.

Highlights

  • Fast: 33 FPS of single image test speed in KITTI benchmark with 384*1280 resolution
  • Accuracy: SOTA on the KITTI benchmark.
  • Anchor Free: No 2D or 3D anchor are reauired
  • Easy to deploy: RTS3D uses conventional convolution operations and MLP, so it is very easy to deploy and accelerate.

RTS3D Baseline and Model Zoo

All experiments are tested with Ubuntu 16.04, Pytorch 1.0.0, CUDA 9.0, Python 3.6, single NVIDIA 2080Ti

IoU Setting 1: Car IoU > 0.5, Pedestrian IoU > 0.25, Cyclist IoU > 0.25

IoU Setting 2: Car IoU > 0.7, Pedestrian IoU > 0.5, Cyclist IoU > 0.5

  • Training on KITTI train split and evaluation on val split.
Class Iteration FPS AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- - - Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car- Recall-11 1 90.9 89.83, 77.05, 68.28 89.27, 70.12, 61.17 73.20, 53.62, 46.44 60.87, 42.38, 36.44
Car- Recall-40 1 90.9 92.92, 76.17, 66.62 90.35, 71.37, 63.52 78.12, 54.75, 47.09 60.34, 39.32, 32.97
Car- Recall-11 2 45.5 90.41, 78.70, 70.03 90.26, 77.23, 68.28 76.56, 56.46, 48.20 63.65, 44.50, 37.48
Car- Recall-40 2 45.5 95.75, 79.61, 69.69 93.57, 76.64, 66.72 78.12, 54.75, 47.09 63.99, 41.78, 34.96
  • Training on KITTI train split and evaluation on val split.
    • FCE Space Resolution: 10 * 10 * 10
    • Recall split: 11
    • Iteration: 2
    • Model: (Google Drive), (Baidu Cloud 提取码:4t4u)
Class AP BEV IoU Setting1 AP 3D IoU Setting1 AP BEV IoU Setting2 AP 3D IoU Setting2
- Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard Easy / Moderate / Hard
Car 90.18, 78.46, 69.76 89.88, 76.64, 67.86 74.95, 54.07, 46.78 58.50, 39.74, 34.83
Pedestrian 57.12, 48.82, 40.88 56.36, 48.29, 40.22 32.16, 26.31, 21.28 26.95, 20.77, 19.74
Cyclist 54.48, 35.78, 30.80 53.86, 30.90, 30.52 33.59, 20.80, 20.14 31.05, 20.26, 18.93

Installation

Please refer to INSTALL.md

Dataset preparation

Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows:

KM3DNet
├── kitti_format
│   ├── data
│   │   ├── kitti
│   │   |   ├── annotations
│   │   │   ├── calib /000000.txt .....
│   │   │   ├── image(left[0-7480] right[7481-14961] input augmentatiom)
│   │   │   ├── label /000000.txt .....
|   |   |   ├── train.txt val.txt trainval.txt
│   │   │   ├── mono_results /000000.txt .....
├── src
├── demo_kitti_format
├── readme
├── requirements.txt

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Acknowledgement

License

RTS3D is released under the MIT License (refer to the LICENSE file for details). Portions of the code are borrowed from, CenterNet, iou3d and kitti_eval (KITTI dataset evaluation). Please refer to the original License of these projects (See NOTICE).

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{2012.15072,
Author = {Peixuan Li, Shun Su, Huaici Zhao},
Title = {RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving},
Year = {2020},
Eprint = {arXiv:2012.15072},
}
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Face recognition. Redefined.

FaceFinder Use a powerful CNN to identify faces in images! TABLE OF CONTENTS About The Project Built With Getting Started Prerequisites Installation U

BleepLogger 20 Jun 16, 2021
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022