DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

Overview

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Cho-Jui Hsieh

This repository contains PyTorch implementation for DynamicViT.

We introduce a dynamic token sparsification framework to prune redundant tokens in vision transformers progressively and dynamically based on the input:

intro

Our code is based on pytorch-image-models, DeiT and LV-ViT

[Project Page] [arXiv]

Model Zoo

We provide our DynamicViT models pretrained on ImageNet:

name arch rho [email protected] [email protected] FLOPs url
DynamicViT-256/0.7 deit_256 0.7 76.532 93.118 1.3G Google Drive / Tsinghua Cloud
DynamicViT-384/0.7 deit_small 0.7 79.316 94.676 2.9G Google Drive / Tsinghua Cloud
DynamicViT-LV-S/0.5 lvvit_s 0.5 81.970 95.756 3.7G Google Drive / Tsinghua Cloud
DynamicViT-LV-S/0.7 lvvit_s 0.7 83.076 96.252 4.6G Google Drive / Tsinghua Cloud
DynamicViT-LV-M/0.7 lvvit_m 0.7 83.816 96.584 8.5G Google Drive / Tsinghua Cloud

Usage

Requirements

  • torch>=1.7.0
  • torchvision>=0.8.1
  • timm==0.4.5

Data preparation: download and extract ImageNet images from http://image-net.org/. The directory structure should be

│ILSVRC2012/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Model preparation: download pre-trained DeiT and LV-ViT models for training DynamicViT:

sh download_pretrain.sh

Demo

We provide a Jupyter notebook where you can run the visualization of DynamicViT.

To run the demo, you need to install matplotlib.

demo

Evaluation

To evaluate a pre-trained DynamicViT model on ImageNet val with a single GPU, run:

python infer.py --data-path /path/to/ILSVRC2012/ --arch arch_name --model-path /path/to/model --base_rate 0.7 

Training

To train DynamicViT models on ImageNet, run:

DeiT-small

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_dynamic_vit.py  --output_dir logs/dynamic-vit_deit-small --arch deit_small --input-size 224 --batch-size 96 --data-path /path/to/ILSVRC2012/ --epochs 30 --dist-eval --distill --base_rate 0.7

LV-ViT-S

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_dynamic_vit.py  --output_dir logs/dynamic-vit_lvvit-s --arch lvvit_s --input-size 224 --batch-size 64 --data-path /path/to/ILSVRC2012/ --epochs 30 --dist-eval --distill --base_rate 0.7

LV-ViT-M

python -m torch.distributed.launch --nproc_per_node=8 --use_env main_dynamic_vit.py  --output_dir logs/dynamic-vit_lvvit-m --arch lvvit_m --input-size 224 --batch-size 48 --data-path /path/to/ILSVRC2012/ --epochs 30 --dist-eval --distill --base_rate 0.7

You can train models with different keeping ratio by adjusting base_rate. DynamicViT can also achieve comparable performance with only 15 epochs training (around 0.1% lower accuracy).

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@article{rao2021dynamicvit,
  title={DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification},
  author={Rao, Yongming and Zhao, Wenliang and Liu, Benlin and Lu, Jiwen and Zhou, Jie and Hsieh, Cho-Jui},
  journal={arXiv preprint arXiv:2106.02034},
  year={2021}
}
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022