Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Overview

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Introduction

image

This is the official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022). We evaluate our methods on three datasets, DRIVE, CHASE_DB1 and STARE.

Datesets

You can download the three datasets from Google drive.
Of course, you can download the dataset from DRIVE, CHASE_DB1 and STARE respectively.

Quick start

Requirement

  1. Refer to Pytorch to install Pytorch >= 1.1.
  2. pip install -r requirements.txt

Config file

DATASET: "DRIVE"

TRAIN_DATA_PATH: ".../training/images" # modify it to your own path
TRAIN_LABEL_PATH: ".../training/1st_manual"


TEST_DATA_PATH: ".../test/images"
TEST_PRED_PATH: "results/test/DRIVE/prediction"
TEST_LABEL_PATH: ".../test/label/1st_manual"

# view
#VAL_PICTURE_PATH: "/gdata1/limx/mx/dataset/Drive19/visualization"
#VIEW_VAL_PATH: "results/val_view"
#VIEW_TRAIN_PATH: "results/train_view"

MODEL_PATH: "results/test/DRIVE/model"
LOG_PATH: "results/test/DRIVE/logging.txt"

# train
LEARNING_RATE: 0.005
BATCH_SIZE: 5
EPOCH: 6000
CHECK_BATCH: 50
multi_scale: [0.3]
INPUT_CHANNEL: 3
MAX_AFFINITY: 5
RCE_WEIGHT: 1
RCE_RATIO: 10

# inference
MODEL_NUMBER: "epoch_2750_f1_0.8261"
# load breakpoint
IS_BREAKPOINT: False
BREAKPOINT: ""


Please modify TRAIN_DATA_PATH, TRAIN_LABEL_PATH, TEST_DATA_PATH and TEST_LABEL_PATH.

Training

Please specify the configuration file.
For example, you can run .sh file to train the specific dataset.

cd rootdir
sh pbs/DRIVE_RUN.sh

After finishing the training stage, you will obtain the /results/test/DRIVE/logging.txt. The logging.txt file can log the metrics, like model number, f1, auc, acc, specificity, precision, sensitivity.

Testing

Please select the best model in loggging.txt and modify the MODEL_NUMBER in configuration file.

cd rootdir
python inference.py --lib/DRIVE.yaml 

Evaluation

To evalutate the results offline bewteen cfg['TEST_PRED_PATH'] and cfg['TEST_LABEL_PATH']. Your can run the code like it.

cd rootdir
python eval.py --lib/DRIVE.yaml 
Owner
anonymous
anonymous
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023