Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Overview

Graph Posterior Network

This is the official code repository to the paper

Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann
Conference on Neural Information Processing Systems (NeurIPS) 2021.

[Paper]|Video - coming soon]

Diagram

Installation

We recommend running this code with its dependencies in a conda enviroment. To begin with, create a new conda environment with all the necessary dependencies assuming that you are in the root directory of this project:

conda env create -f gpn_environment.yml python==3.8 --force

Since the code is packaged, you will also have to setup the code accordingly. Assuming that you are in the root directory of this project, run:

conda activate gpn
pip3 install -e .

Data

Since we rely on published datasets from the Torch-Geometric package, you don't have to download datasets manually. When you run experiments on supported datasets, those will be downloaded and placed in the corresponding data directories. You can run the following datasets

  • CoraML
  • CiteSeer
  • PubMed
  • AmazonPhotos
  • AmazonComputers
  • CoauthorCS
  • CoauthorPhysics

Running Experiments

The experimental setup builds upon Sacred and configuring experiments in .yamlfiles. We will provide configurations

  • for vanilla node classification
  • leave-out-class experiments
  • experiments with isolated node perturbations
  • experiments for feature shifts
  • experiments for edge shifts

with a default fraction of perturbed nodes of 10%. We provide them for the smaller datasets (i.e. all except ogbn-arxiv) for hidden dimensions H=10 and H=16.

The main experimental script is train_and_eval.py. Assuming that you are in the root directory of this project for all further commands, you can run experiments with

Vanilla Node Classification

For the vanilla classification on the CoraML dataset with a hidden dimension of 16 or 10 respectively, run

python3 train_and_eval.py with configs/gpn/classification_gpn_16.yaml data.dataset=CoraML
python3 train_and_eval.py with configs/gpn/classification_gpn_10.yaml data.dataset=CoraML

If you have GPU-devices availale on your system, experiments will run on device 0 on default. If no CUDA-devices can be found, the code will revert back to running only on CPUs. Runs will produce assets per default. Also note that for running experiments for graphs under perturbations, you will have to run the corresponding vanilla classification experiment first.

Options for Feature Shifts

We consider random features from Unit Gaussian Distribution (normal) and from a Bernoulli Distribution (bernoulli_0.5). When using the configuration ood_features, you can change those settings (key ood_perturbation_type) in the command line together with the fraction of perturbed nodes (key ood_budget_per_graph) or in the corresponding configurations files, for example as

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5 data.ood_budget_per_graph=0.025

For experiments considering perturbations in an isolated fashion, this applies accordingly but without the fraction of perturbed nodes, e.g.

python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal
python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5

Options for Edge Shifts

We consider random edge perturbations and the global and untargeted DICE attack. Those attacks can be set with the key ood_type which can be either set to random_attack_dice or random_edge_perturbations. As above, those settings can be changed in the command line or in the corresponding configuration files. While the key ood_budget_per_graph refers to the fraction of perturbed nodes in the paragraph above, it describes the fraction of perturbed edges in this case.

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_attack_dice data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_edge_perturbations data.ood_budget_per_graph=0.025

Further Options

With the settings above, you can reproduce our experimental results. If you want to change different architectural settings, simply change the corresponding keys in the configuration files with most of them being self-explanatory.

Structure

If you want to have a detailed look at our code, we give a brief overview of our code structure.

  • configs: directory for model configurations
  • data: directory for datasets
  • gpn: source code
    • gpn.data: code related to loading datasets and creating ID and OOD datasets
    • gpn.distributions: code related to custom distributions similar to torch.distributions
    • experiments: main routines for running experiments, i.e. loading configs, setting up datasets and models, training and evaluation
    • gpn.layers: custom layers
    • gpn.models: implementation of reference models and Graph Posterior Network (+ablated models)
    • gpn.nn: training related utilities like losses, metrics, or training engines
    • gpn.utils: general utility code
  • saved_experiments: directory for saved models
  • train_and_eval.py: main script for training & evaluation
  • gpn_qualitative_evaluation.ipynb: jupyter notebook which evaluates the results from Graph Posterior Network in a qualitative fashion

Note that we provide the implementations of most of our used reference models. Our main Graph Posterior Network model can be found in gpn.models.gpn_base.py. Ablated models can be found in a similar fashion, i.e. PostNet in gpn.models.gpn_postnet.py, PostNet+diffusion in gpn.models.gpn_postnet_diff.py and the model diffusiong log-beta scores in gpn.models.gpn_log_beta.py.

We provide all basic configurations for reference models in configs/reference. Note that some models have dependencies with others, e.g. running classification_gcn_dropout.yaml or classification_gcn_energy.yaml would require training the underlying GCN first by running classification_gcn.yaml first, running classification_gcn_ensemble.yaml would require training 10 GCNs first with init_no in 1...10, and running classification_sgcn.yaml (GKDE-GCN) would require training the teacher-GCN first by running classification_gcn.yaml and computing the kernel values by running classification_gdk.yaml first.

Cite

Please cite our paper if you use the model or this code in your own work.

@incollection{graph-postnet,
title={Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification},
author={Stadler, Maximilian and Charpentier, Bertrand and Geisler, Simon and Z{\"u}gner, Daniel and G{\"u}nnemann, Stephan},
booktitle = {Advances in Neural Information Processing Systems},
volume = {34},
publisher = {Curran Associates, Inc.},
year = {2021}
}
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022