Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Overview

Graph Posterior Network

This is the official code repository to the paper

Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, Stephan Günnemann
Conference on Neural Information Processing Systems (NeurIPS) 2021.

[Paper]|Video - coming soon]

Diagram

Installation

We recommend running this code with its dependencies in a conda enviroment. To begin with, create a new conda environment with all the necessary dependencies assuming that you are in the root directory of this project:

conda env create -f gpn_environment.yml python==3.8 --force

Since the code is packaged, you will also have to setup the code accordingly. Assuming that you are in the root directory of this project, run:

conda activate gpn
pip3 install -e .

Data

Since we rely on published datasets from the Torch-Geometric package, you don't have to download datasets manually. When you run experiments on supported datasets, those will be downloaded and placed in the corresponding data directories. You can run the following datasets

  • CoraML
  • CiteSeer
  • PubMed
  • AmazonPhotos
  • AmazonComputers
  • CoauthorCS
  • CoauthorPhysics

Running Experiments

The experimental setup builds upon Sacred and configuring experiments in .yamlfiles. We will provide configurations

  • for vanilla node classification
  • leave-out-class experiments
  • experiments with isolated node perturbations
  • experiments for feature shifts
  • experiments for edge shifts

with a default fraction of perturbed nodes of 10%. We provide them for the smaller datasets (i.e. all except ogbn-arxiv) for hidden dimensions H=10 and H=16.

The main experimental script is train_and_eval.py. Assuming that you are in the root directory of this project for all further commands, you can run experiments with

Vanilla Node Classification

For the vanilla classification on the CoraML dataset with a hidden dimension of 16 or 10 respectively, run

python3 train_and_eval.py with configs/gpn/classification_gpn_16.yaml data.dataset=CoraML
python3 train_and_eval.py with configs/gpn/classification_gpn_10.yaml data.dataset=CoraML

If you have GPU-devices availale on your system, experiments will run on device 0 on default. If no CUDA-devices can be found, the code will revert back to running only on CPUs. Runs will produce assets per default. Also note that for running experiments for graphs under perturbations, you will have to run the corresponding vanilla classification experiment first.

Options for Feature Shifts

We consider random features from Unit Gaussian Distribution (normal) and from a Bernoulli Distribution (bernoulli_0.5). When using the configuration ood_features, you can change those settings (key ood_perturbation_type) in the command line together with the fraction of perturbed nodes (key ood_budget_per_graph) or in the corresponding configurations files, for example as

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5 data.ood_budget_per_graph=0.025

For experiments considering perturbations in an isolated fashion, this applies accordingly but without the fraction of perturbed nodes, e.g.

python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=normal
python3 train_and_eval.py with configs/gpn/ood_isolated_gpn_16.yaml data.dataset=CoraML data.ood_perturbation_type=bernoulli_0.5

Options for Edge Shifts

We consider random edge perturbations and the global and untargeted DICE attack. Those attacks can be set with the key ood_type which can be either set to random_attack_dice or random_edge_perturbations. As above, those settings can be changed in the command line or in the corresponding configuration files. While the key ood_budget_per_graph refers to the fraction of perturbed nodes in the paragraph above, it describes the fraction of perturbed edges in this case.

python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_attack_dice data.ood_budget_per_graph=0.025
python3 train_and_eval.py with configs/gpn/ood_features_gpn_16.yaml data.dataset=CoraML data.ood_type=random_edge_perturbations data.ood_budget_per_graph=0.025

Further Options

With the settings above, you can reproduce our experimental results. If you want to change different architectural settings, simply change the corresponding keys in the configuration files with most of them being self-explanatory.

Structure

If you want to have a detailed look at our code, we give a brief overview of our code structure.

  • configs: directory for model configurations
  • data: directory for datasets
  • gpn: source code
    • gpn.data: code related to loading datasets and creating ID and OOD datasets
    • gpn.distributions: code related to custom distributions similar to torch.distributions
    • experiments: main routines for running experiments, i.e. loading configs, setting up datasets and models, training and evaluation
    • gpn.layers: custom layers
    • gpn.models: implementation of reference models and Graph Posterior Network (+ablated models)
    • gpn.nn: training related utilities like losses, metrics, or training engines
    • gpn.utils: general utility code
  • saved_experiments: directory for saved models
  • train_and_eval.py: main script for training & evaluation
  • gpn_qualitative_evaluation.ipynb: jupyter notebook which evaluates the results from Graph Posterior Network in a qualitative fashion

Note that we provide the implementations of most of our used reference models. Our main Graph Posterior Network model can be found in gpn.models.gpn_base.py. Ablated models can be found in a similar fashion, i.e. PostNet in gpn.models.gpn_postnet.py, PostNet+diffusion in gpn.models.gpn_postnet_diff.py and the model diffusiong log-beta scores in gpn.models.gpn_log_beta.py.

We provide all basic configurations for reference models in configs/reference. Note that some models have dependencies with others, e.g. running classification_gcn_dropout.yaml or classification_gcn_energy.yaml would require training the underlying GCN first by running classification_gcn.yaml first, running classification_gcn_ensemble.yaml would require training 10 GCNs first with init_no in 1...10, and running classification_sgcn.yaml (GKDE-GCN) would require training the teacher-GCN first by running classification_gcn.yaml and computing the kernel values by running classification_gdk.yaml first.

Cite

Please cite our paper if you use the model or this code in your own work.

@incollection{graph-postnet,
title={Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification},
author={Stadler, Maximilian and Charpentier, Bertrand and Geisler, Simon and Z{\"u}gner, Daniel and G{\"u}nnemann, Stephan},
booktitle = {Advances in Neural Information Processing Systems},
volume = {34},
publisher = {Curran Associates, Inc.},
year = {2021}
}
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022