Hierarchical probabilistic 3D U-Net, with attention mechanisms (โ€”๐˜ˆ๐˜ต๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜œ-๐˜•๐˜ฆ๐˜ต, ๐˜š๐˜Œ๐˜™๐˜ฆ๐˜ด๐˜•๐˜ฆ๐˜ต) and a nested decoder structure with deep supervision (โ€”๐˜œ๐˜•๐˜ฆ๐˜ต++).

Overview

Clinically Significant Prostate Cancer Detection in bpMRI

Note: This repo will be continually updated upon future advancements and we welcome open-source contributions! Currently, it shares the TensorFlow 2.5 version of the Hierarchical Probabilistic 3D U-Net (with attention mechanisms, nested decoder structure and deep supervision), titled M1, as explored in the publication(s) listed below. Source code used for training this model, as per our original setup, carry a large number of dependencies on internal datasets, tooling, infrastructure and hardware, and their release is currently not feasible. However, an equivalent minimal adaptation has been made available. We encourage users to test out M1, identify potential areas for significant improvement and propose PRs for inclusion to this repo.

Pre-Trained Model using 1950 bpMRI with PI-RADS v2 Annotations [Training:Validation Ratio - 80:20]:
To infer lesion predictions on testing samples using the pre-trained variant (architecture in commit 58b784f) of this algorithm, please visit https://grand-challenge.org/algorithms/prostate-mri-cad-cspca/

Main Scripts
โ— Preprocessing Functions: tf2.5/scripts/preprocess.py
โ— Tensor-Based Augmentations: tf2.5/scripts/model/augmentations.py
โ— Training Script Template: tf2.5/scripts/train_model.py
โ— Basic Callbacks (e.g. LR Schedules): tf2.5/scripts/callbacks.py
โ— Loss Functions: tf2.5/scripts/model/losses.py
โ— Network Architecture: tf2.5/scripts/model/unets/networks.py

Requirements
โ— Complete Docker Container: anindox8/m1:latest
โ— Key Python Packages: tf2.5/requirements.txt

schematic Train-time schematic for the Bayesian/hierarchical probabilistic configuration of M1. L_S denotes the segmentation loss between prediction p and ground-truth Y. Additionally, L_KL, denoting the Kullbackโ€“Leibler divergence loss between prior distribution P and posterior distribution Q, is used at train-time (refer to arXiv:1905.13077). For each execution of the model, latent samples z_i โˆˆ Q (train-time) or z_i โˆˆ P (test-time) are successively drawn at increasing scales of the model to predict one segmentation mask p.

schematic Architecture schematic of M1, with attention mechanisms and a nested decoder structure with deep supervision.

Minimal Example of Model Setup in TensorFlow 2.5:
(More Details: Training CNNs in TF2: Walkthrough; TF2 Datasets: Best Practices; TensorFlow Probability)

# U-Net Definition (Note: Hyperparameters are Data-Centric -> Require Adequate Tuning for Optimal Performance)
unet_model = unets.networks.M1(\
                        input_spatial_dims =  (20,160,160),            
                        input_channels     =   3,
                        num_classes        =   2,                       
                        filters            =  (32,64,128,256,512),   
                        strides            = ((1,1,1),(1,2,2),(1,2,2),(2,2,2),(2,2,2)),  
                        kernel_sizes       = ((1,3,3),(1,3,3),(3,3,3),(3,3,3),(3,3,3)),
                        prob_latent_dims   =  (3,2,1,0)
                        dropout_rate       =   0.50,       
                        dropout_mode       =  'monte-carlo',
                        se_reduction       =  (8,8,8,8,8),
                        att_sub_samp       = ((1,1,1),(1,1,1),(1,1,1),(1,1,1)),
                        kernel_initializer =   tf.keras.initializers.Orthogonal(gain=1), 
                        bias_initializer   =   tf.keras.initializers.TruncatedNormal(mean=0, stddev=1e-3),
                        kernel_regularizer =   tf.keras.regularizers.l2(1e-4),
                        bias_regularizer   =   tf.keras.regularizers.l2(1e-4),     
                        cascaded           =   False,
                        probabilistic      =   True,
                        deep_supervision   =   True,
                        summary            =   True)  

# Schedule Cosine Annealing Learning Rate with Warm Restarts
LR_SCHEDULE = (tf.keras.optimizers.schedules.CosineDecayRestarts(\
                        initial_learning_rate=1e-3, t_mul=2.00, m_mul=1.00, alpha=1e-3,
                        first_decay_steps=int(np.ceil(((TRAIN_SAMPLES)/BATCH_SIZE)))*10))
                                                  
# Compile Model w/ Optimizer and Loss Function(s)
unet_model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=LR_SCHEDULE, amsgrad=True), 
                   loss      = losses.Focal(alpha=[0.75, 0.25], gamma=2.00).loss)

# Train Model
unet_model.fit(...)

If you use this repo or some part of its codebase, please cite the following articles (see bibtex):

โ— A. Saha, J. Bosma, J. Linmans, M. Hosseinzadeh, H. Huisman (2021), "Anatomical and Diagnostic Bayesian Segmentation in Prostate MRI โˆ’Should Different Clinical Objectives Mandate Different Loss Functions?", Medical Imaging Meets NeurIPS Workshop โ€“ 35th Conference on Neural Information Processing Systems (NeurIPS), Sydney, Australia. (architecture in commit 914ec9d)

โ— A. Saha, M. Hosseinzadeh, H. Huisman (2021), "End-to-End Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction", Medical Image Analysis:102155. (architecture in commit 58b784f)

โ— A. Saha, M. Hosseinzadeh, H. Huisman (2020), "Encoding Clinical Priori in 3D Convolutional Neural Networks for Prostate Cancer Detection in bpMRI", Medical Imaging Meets NeurIPS Workshop โ€“ 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada. (architecture in commit 58b784f)

Contact: [email protected]; [email protected]

Related U-Net Architectures:
โ— nnU-Net: https://github.com/MIC-DKFZ/nnUNet
โ— Attention U-Net: https://github.com/ozan-oktay/Attention-Gated-Networks
โ— UNet++: https://github.com/MrGiovanni/UNetPlusPlus
โ— Hierarchical Probabilistic U-Net: https://github.com/deepmind/deepmind-research/tree/master/hierarchical_probabilistic_unet

Owner
Diagnostic Image Analysis Group
Diagnostic Image Analysis Group
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
A Convolutional Transformer for Keyword Spotting

โ˜ข๏ธ Audiomer โ˜ข๏ธ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
๐Ÿค— Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | ็ฎ€ไฝ“ไธญๆ–‡ | ็น้ซ”ไธญๆ–‡ | ํ•œ๊ตญ์–ด State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow ๐Ÿค— Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
่ฟ™ๆ˜ฏไธ€ไธชfacenet-pytorch็š„ๅบ“๏ผŒๅฏไปฅ็”จไบŽ่ฎญ็ปƒ่‡ชๅทฑ็š„ไบบ่„ธ่ฏ†ๅˆซๆจกๅž‹ใ€‚

Facenet๏ผšไบบ่„ธ่ฏ†ๅˆซๆจกๅž‹ๅœจPytorchๅฝ“ไธญ็š„ๅฎž็Žฐ ็›ฎๅฝ• ๆ€ง่ƒฝๆƒ…ๅ†ต Performance ๆ‰€้œ€็Žฏๅขƒ Environment ๆณจๆ„ไบ‹้กน Attention ๆ–‡ไปถไธ‹่ฝฝ Download ้ข„ๆต‹ๆญฅ้ชค How2predict ่ฎญ็ปƒๆญฅ้ชค How2train ๅ‚่€ƒ่ต„ๆ–™ Reference ๆ€ง่ƒฝๆƒ…ๅ†ต ่ฎญ็ปƒๆ•ฐๆฎ

Bubbliiiing 210 Jan 06, 2023
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenbergโ€“Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Cรขmara 5 Jan 21, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023