TinyML Cookbook, published by Packt

Overview

TinyML Cookbook

TinyML Cookbook

This is the code repository for TinyML Cookbook, published by Packt.

Author: Gian Marco Iodice
Publisher: Packt

About the book

This book is about TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers.

TinyML is an exciting field full of opportunities. With a small budget, we can give life to objects that interact with the world around us smartly and transform the way we live for the better. However, this field can be hard to approach if we come from an ML background with a little familiarity with embedded systems such as microcontrollers. Therefore, this book wants to dispel these barriers and make TinyML also accessible to developers with no embedded programming experience through practical examples. Each chapter will be a self-contained project to learn how to use some of the technologies at the heart of TinyML, interface with electronic components like sensors, and deploy ML models on memory-constrained devices.

Who is this book for

This book is for ML developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. The book will help you expand your knowledge towards the revolution of tiny machine learning (TinyML) by building end-to-end smart projects with real-world data sensors on Arduino Nano 33 BLE Sense and Raspberry Pi Pico.

Basic familiarity with C/C++, Python programming, and a command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.

Technical requirements

You will need a computer (either a laptop or desktop) with an x86-64 architecture and at least one USB port for programming Arduino Nano 33 BLE Sense and Raspberry Pi Pico microcontroller boards. For the first six chapters, you can use Ubuntu 18.04 (or later) or Windows (for example, Windows 10) as an operating system (OS). However, you will need Ubuntu 18.04 (or later) for chapter 7 and chapter 8.

The only software prerequisites for your computer are:

  • Python (Python 3.7 recommended)
  • Text editor (for example, gedit on Ubuntu)
  • Media player (for example, VLC)
  • Image viewer (for example, the default app in Ubuntu or Windows 10)
  • Web browser (for example, Google Chrome)

Arduino Nano 33 BLE Sense and Raspberry Pi Pico programs will be developed directly in the web browser with the Arduino Web Editor. However, you may also consider using the local Arduino IDE following the instructions provided at this link.

The following table summarizes the hardware devices and software tools covered in each chapter:

Chapter Devices SW tools Electronic components
1 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor None
2 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor - A micro-USB cable
- 1x half-size breadboard
- 1x red LED
- 1x 220 Ohm resistor
- 1x 3 AA battery holder
- 1x 4 AA battery holder
- 4x AA batteries
- 5x jumper wires
3 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Google Colaboratory
- A micro-USB cable
- 1x half-size breadboard
- 1x AM2302 module with the DHT22 sensor
- 5x jumper wires
4 - Arduino Nano 33 BLE Sense
- Raspberry Pi Pico
- Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x electrect microphone amplifier - MAX9814
- 2x 220 Ohm resistor
- 1x 100 Ohm resistor
- 1x red LED
- 1x green LED
- 1x blue LED
- 1x push-button
- 11x jumper wires
5 - Arduino Nano 33 BLE Sense - Arduino Web Editor
- Google Colaboratory
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x OV7670 camera module
- 1x push-button
- 18 jumper wires
6 - Raspberry Pi Pico - Arduino Web Editor
- Edge Impulse
- Python
- A micro-USB cable
- 1x half-size breadboard
- 1x MPU-6050 IMU
- 4x jumper wires
7 - Arm Cortex-M3 Virtual Platform (QEMU) - Google Colaboratory
- Python
- Zephyr project
None
8 - Virtual Arm Ethos-U55 microNPU - Arm Corstone-300 FVP
- Python
- TVM
None

Citation

To cite TinyML Cookbook in publications use:

@book{iodice2022tinymlcookbook,
  title={TinyML Cookbook: Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter},
  author={Gian Marco Iodice},
  year={2022},
  publisher={Packt},
  isbn = {9781801814973},
  url = {https://www.packtpub.com/product/tinyml-cookbook/9781801814973}
}

About the author

Gian Marco Iodice is team and tech lead in the Machine Learning Group at Arm, who co-created the Arm Compute Library in 2017. Arm Compute Library is currently the most performant library for ML on Arm, and it’s deployed on billions of devices worldwide – from servers to smartphones.

Gian Marco holds an MSc degree, with honors, in electronic engineering from the University of Pisa (Italy) and has several years of experience developing ML and computer vision algorithms on edge devices. Now, he's leading the ML performance optimization on Arm Mali GPUs.

In 2020, Gian Marco co-founded the TinyML UK meetup group to encourage knowledge sharing, educate, and inspire the next generation of ML developers on tiny and power-efficient devices.

Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
190 Jan 03, 2023
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022