Development Kit for the SoccerNet Challenge

Overview

SoccerNetv2-DevKit

Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started working with the soccernet data and the proposed tasks. More information about the dataset can be found on our official website.

SoccerNet-v2 is an extension of SoccerNet-v1 with new and challenging tasks including action spotting, camera shot segmentation with boundary detection, and a novel replay grounding task.

The dataset consists of 500 complete soccer games including:

  • Full untrimmed broadcast videos in both low and high resolution.
  • Pre-computed features such as ResNET-152.
  • Annotations of actions among 17 classes (Labels-v2.json).
  • Annotations of camera replays linked to actions (Labels-cameras.json).
  • Annotations of camera changes and camera types for 200 games (Labels-cameras.json).

Participate in our upcoming Challenge in the CVPR 2021 International Challenge on Activity Recognition Workshop and try to win up to 1000$ sponsored by Second Spectrum! All details can be found on the challenge website, or on the main page.

The participation deadline is fixed at the 30th of May 2021. The official rules and guidelines are available on ChallengeRules.md.

How to download SoccerNet-v2

A SoccerNet pip package to easily download the data and the annotations is available.

To install the pip package simply run:

pip install SoccerNet

Please follow the instructions provided in the Download folder of this repository. Do also mind that signing an Non-Disclosure agreement (NDA) is required to access the LQ and HQ videos: NDA.

How to extract video features

As it was one of the most requested features on SoccerNet-V1, this repository provides functions to automatically extract the ResNet-152 features and compute the PCA on your own broadcast videos. These functions allow you to test pre-trained action spotting, camera segmentation or replay grounding models on your own games.

The functions to extract the video features can be found in the Features folder.

Baseline Implementations

This repository contains several baselines for each task which are presented in the SoccerNet-V2 paper, or subsequent papers. You can use these codes to build upon our methods and improve the performances.

Evaluation

This repository and the pip package provide evaluation functions for the three proposed tasks based on predictions saved in the JSON format. See the Evaluation folder of this repository for more details.

Visualizations

Finally, this repository provides the Annotation tool used to annotate the actions, the camera types and the replays. This tool can be used to visualize the information. Please follow the instruction in the dedicated folder for more details.

Citation

For further information check out the paper and supplementary material: https://arxiv.org/abs/2011.13367

Please cite our work if you use our dataset:

@InProceedings{Deliège2020SoccerNetv2,
      title={SoccerNet-v2 : A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos}, 
      author={Adrien Deliège and Anthony Cioppa and Silvio Giancola and Meisam J. Seikavandi and Jacob V. Dueholm and Kamal Nasrollahi and Bernard Ghanem and Thomas B. Moeslund and Marc Van Droogenbroeck},
      year={2021},
      booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
      month = {June},
}
Owner
Silvio Giancola
Silvio Giancola
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022