Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Overview

Few-shot Image Generation via Cross-domain Correspondence

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zhang

Adobe Research, UC Davis, UC Berkeley

teaser

PyTorch implementation of adapting a source GAN (trained on a large dataset) to a target domain using very few images.

Project page | Paper

Overview

Our method helps adapt the source GAN where one-to-one correspondence is preserved between the source Gs(z) and target Gt(z) images.

Requirements

Note The base model is taken from StyleGAN2's implementation by @rosinality.

  • Linux
  • NVIDIA GPU + CUDA CuDNN 10.2
  • PyTorch 1.7.0
  • Python 3.6.9
  • Install all the other libraries through pip install -r requirements.txt

Testing

Currently, we are providing different sets of images, using which the quantitative results in Table 1 and 2 are presented.

Evaluating FID

There are three sets of images which are used to get the results in Table 1:

  • A set of real images from a target domain -- Rtest
  • 10 images from the above set (Rtest) used to train the algorithm -- Rtrain
  • 5000 generated images using the GAN-based method -- F

The following table provides a link to each of these images:

Rtrain Rtest F
Babies link link link
Sunglasses link link link
Sketches link link link

Rtrain is given just to illustate what the algorithm sees, and won't be used for computing the FID score.

Download, and unzip the set of images into your desired directory, and compute the FID score (taken from pytorch-fid) between the real (Rtest) and fake (F) images, by running the following command

python -m pytorch_fid /path/to/real/images /path/to/fake/images

Evaluating intra-cluster distance

Download the entire set of images from here (1.1 GB), which are used for the results in Table 2. The organization of this collection is as follows:

cluster_centers
└── amedeo			# target domain -- will be from [amedeo, sketches]
    └── ours			# method -- will be from [tgan, tgan_ada, freezeD, ewc, ours]
        └── c0			# center id -- there will be 10 clusters [c0, c1 ... c9]
            ├── center.png	# cluster center -- this is one of the 10 training images used. Each cluster will have its own center
            │── img0.png   	# generated images which matched with this cluster's center, according to LPIPS distance.
            │── img1.png
            │      .
	    │      .
                   

Unzip the file, and then run the following command to compute the results for a baseline on a dataset:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline <baseline> --dataset <target_domain> --mode intra_cluster_dist

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode intra_cluster_dist

We also provide the utility to visualize the closest and farthest members of a cluster, as shown in Figure 14 (shown below), using the following command:

CUDA_VISIBLE_DEVICES=0 python3 feat_cluster.py --baseline tgan --dataset sketches --mode visualize_members

The command will save the generated image which is closest/farthest to/from a center as closest.png/farthest.png respectively.

Note We cannot share the images for the caricature domain due to license issues.

More results coming soon..

Bibtex

@inproceedings{ojha2021few-shot-gan,
  title={Few-shot Image Generation via Cross-domain Correspondence},
  author={Ojha, Utkarsh and Li, Yijun and Lu, Cynthia and Efros, Alexei A. and Lee, Yong Jae and Shechtman, Eli and Zhang, Richard},
  booktitle={CVPR},
  year={2021}
}

Acknowledgment

As mentioned before, the StyleGAN2 model is borrowed from this wonderful pytorch implementation by @rosinality. We are also thankful to @mseitzer and @richzhang for their user friendly implementations of computing FID score and LPIPS metric.

Owner
Utkarsh Ojha
Doing things with pixels
Utkarsh Ojha
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

DALL-E in Pytorch Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the ge

Phil Wang 5k Jan 04, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023