EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

Overview

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

This repo contains the official Pytorch implementaion code and configuration files of EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network. created by Hu Zhang.

Installation

Requirements

  • Python 3.6+
  • PyTorch 1.0+

Our environments

  • OS: Ubuntu 18.04
  • CUDA: 10.0
  • Toolkit: PyTorch 1.0
  • GPU: Titan RTX

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
  • Create a conda virtual environment and activate it:
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%)
EPSANet-50(Small) 22.56 3.62 77.49 93.54
EPSANet-50(Large) 27.90 4.72 78.64 94.18
EPSANet-101(Small) 38.90 6.82 78.43 94.11
EPSANet-101(Large) 49.59 8.97 79.38 94.58

Object Detection on MS-COCO 2017

Faster R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 38.56 197.07 39.2 60.3 42.3
EPSANet-50(large) pytorch 1x 43.85 219.64 40.9 62.1 44.6

Mask R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 41.20 248.53 40.0 60.9 43.3
EPSANet-50(large) pytorch 1x 46.50 271.10 41.4 62.3 45.3

RetinaNet

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 34.78 229.32 38.2 58.1 40.6
EPSANet-50(large) pytorch 1x 40.07 251.89 39.6 59.4 42.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

model Params(M) FLOPs(G) AP AP_50 AP_75
EPSANet-50(small) 41.20 248.53 35.9 57.7 38.1
EPSANet-50(Large) 46.50 271.10 37.1 59.0 39.5

Citing EPSANet

You can cite the paper as:

@article{hu2021epsanet,
  title={EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network},
  author={Hu Zhang and Keke Zu and Jian Lu and Yuru Zou and Deyu Meng},
  journal={arXiv preprint arXiv:2105.14447},
  year={2021}
}
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022