EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

Overview

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

This repo contains the official Pytorch implementaion code and configuration files of EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network. created by Hu Zhang.

Installation

Requirements

  • Python 3.6+
  • PyTorch 1.0+

Our environments

  • OS: Ubuntu 18.04
  • CUDA: 10.0
  • Toolkit: PyTorch 1.0
  • GPU: Titan RTX

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
  • Create a conda virtual environment and activate it:
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%)
EPSANet-50(Small) 22.56 3.62 77.49 93.54
EPSANet-50(Large) 27.90 4.72 78.64 94.18
EPSANet-101(Small) 38.90 6.82 78.43 94.11
EPSANet-101(Large) 49.59 8.97 79.38 94.58

Object Detection on MS-COCO 2017

Faster R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 38.56 197.07 39.2 60.3 42.3
EPSANet-50(large) pytorch 1x 43.85 219.64 40.9 62.1 44.6

Mask R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 41.20 248.53 40.0 60.9 43.3
EPSANet-50(large) pytorch 1x 46.50 271.10 41.4 62.3 45.3

RetinaNet

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 34.78 229.32 38.2 58.1 40.6
EPSANet-50(large) pytorch 1x 40.07 251.89 39.6 59.4 42.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

model Params(M) FLOPs(G) AP AP_50 AP_75
EPSANet-50(small) 41.20 248.53 35.9 57.7 38.1
EPSANet-50(Large) 46.50 271.10 37.1 59.0 39.5

Citing EPSANet

You can cite the paper as:

@article{hu2021epsanet,
  title={EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network},
  author={Hu Zhang and Keke Zu and Jian Lu and Yuru Zou and Deyu Meng},
  journal={arXiv preprint arXiv:2105.14447},
  year={2021}
}
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022