Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Overview

Travis CI

Single Image Super-Resolution with EDSR, WDSR and SRGAN

A Tensorflow 2.x based implementation of

This is a complete re-write of the old Keras/Tensorflow 1.x based implementation available here. Some parts are still work in progress but you can already train models as described in the papers via a high-level training API. Furthermore, you can also fine-tune EDSR and WDSR models in an SRGAN context. Training and usage examples are given in the notebooks

A DIV2K data provider automatically downloads DIV2K training and validation images of given scale (2, 3, 4 or 8) and downgrade operator ("bicubic", "unknown", "mild" or "difficult").

Important: if you want to evaluate the pre-trained models with a dataset other than DIV2K please read this comment (and replies) first.

Environment setup

Create a new conda environment with

conda env create -f environment.yml

and activate it with

conda activate sisr

Introduction

You can find an introduction to single-image super-resolution in this article. It also demonstrates how EDSR and WDSR models can be fine-tuned with SRGAN (see also this section).

Getting started

Examples in this section require following pre-trained weights for running (see also example notebooks):

Pre-trained weights

  • weights-edsr-16-x4.tar.gz
    • EDSR x4 baseline as described in the EDSR paper: 16 residual blocks, 64 filters, 1.52M parameters.
    • PSNR on DIV2K validation set = 28.89 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-wdsr-b-32-x4.tar.gz
    • WDSR B x4 custom model: 32 residual blocks, 32 filters, expansion factor 6, 0.62M parameters.
    • PSNR on DIV2K validation set = 28.91 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-srgan.tar.gz
    • SRGAN as described in the SRGAN paper: 1.55M parameters, trained with VGG54 content loss.

After download, extract them in the root folder of the project with

tar xvfz weights-<...>.tar.gz

EDSR

from model import resolve_single
from model.edsr import edsr

from utils import load_image, plot_sample

model = edsr(scale=4, num_res_blocks=16)
model.load_weights('weights/edsr-16-x4/weights.h5')

lr = load_image('demo/0851x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-edsr

WDSR

from model.wdsr import wdsr_b

model = wdsr_b(scale=4, num_res_blocks=32)
model.load_weights('weights/wdsr-b-32-x4/weights.h5')

lr = load_image('demo/0829x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-wdsr

Weight normalization in WDSR models is implemented with the new WeightNormalization layer wrapper of Tensorflow Addons. In its latest version, this wrapper seems to corrupt weights when running model.predict(...). A workaround is to set model.run_eagerly = True or compile the model with model.compile(loss='mae') in advance. This issue doesn't arise when calling the model directly with model(...) though. To be further investigated ...

SRGAN

from model.srgan import generator

model = generator()
model.load_weights('weights/srgan/gan_generator.h5')

lr = load_image('demo/0869x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-srgan

DIV2K dataset

For training and validation on DIV2K images, applications should use the provided DIV2K data loader. It automatically downloads DIV2K images to .div2k directory and converts them to a different format for faster loading.

Training dataset

from data import DIV2K

train_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='train')      # Training dataset are images 001 - 800
                     
# Create a tf.data.Dataset          
train_ds = train_loader.dataset(batch_size=16,         # batch size as described in the EDSR and WDSR papers
                                random_transform=True, # random crop, flip, rotate as described in the EDSR paper
                                repeat_count=None)     # repeat iterating over training images indefinitely

# Iterate over LR/HR image pairs                                
for lr, hr in train_ds:
    # .... 

Crop size in HR images is 96x96.

Validation dataset

from data import DIV2K

valid_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='valid')      # Validation dataset are images 801 - 900
                     
# Create a tf.data.Dataset          
valid_ds = valid_loader.dataset(batch_size=1,           # use batch size of 1 as DIV2K images have different size
                                random_transform=False, # use DIV2K images in original size 
                                repeat_count=1)         # 1 epoch
                                
# Iterate over LR/HR image pairs                                
for lr, hr in valid_ds:
    # ....                                 

Training

The following training examples use the training and validation datasets described earlier. The high-level training API is designed around steps (= minibatch updates) rather than epochs to better match the descriptions in the papers.

EDSR

from model.edsr import edsr
from train import EdsrTrainer

# Create a training context for an EDSR x4 model with 16 
# residual blocks.
trainer = EdsrTrainer(model=edsr(scale=4, num_res_blocks=16), 
                      checkpoint_dir=f'.ckpt/edsr-16-x4')
                      
# Train EDSR model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)
              
# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/edsr-16-x4/weights.h5')                                    

Interrupting training and restarting it again resumes from the latest saved checkpoint. The trained Keras model can be accessed with trainer.model.

WDSR

from model.wdsr import wdsr_b
from train import WdsrTrainer

# Create a training context for a WDSR B x4 model with 32 
# residual blocks.
trainer = WdsrTrainer(model=wdsr_b(scale=4, num_res_blocks=32), 
                      checkpoint_dir=f'.ckpt/wdsr-b-8-x4')

# Train WDSR B model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)

# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/wdsr-b-32-x4/weights.h5')

SRGAN

Generator pre-training

from model.srgan import generator
from train import SrganGeneratorTrainer

# Create a training context for the generator (SRResNet) alone.
pre_trainer = SrganGeneratorTrainer(model=generator(), checkpoint_dir=f'.ckpt/pre_generator')

# Pre-train the generator with 1,000,000 steps (100,000 works fine too). 
pre_trainer.train(train_ds, valid_ds.take(10), steps=1000000, evaluate_every=1000)

# Save weights of pre-trained generator (needed for fine-tuning with GAN).
pre_trainer.model.save_weights('weights/srgan/pre_generator.h5')

Generator fine-tuning (GAN)

from model.srgan import generator, discriminator
from train import SrganTrainer

# Create a new generator and init it with pre-trained weights.
gan_generator = generator()
gan_generator.load_weights('weights/srgan/pre_generator.h5')

# Create a training context for the GAN (generator + discriminator).
gan_trainer = SrganTrainer(generator=gan_generator, discriminator=discriminator())

# Train the GAN with 200,000 steps.
gan_trainer.train(train_ds, steps=200000)

# Save weights of generator and discriminator.
gan_trainer.generator.save_weights('weights/srgan/gan_generator.h5')
gan_trainer.discriminator.save_weights('weights/srgan/gan_discriminator.h5')

SRGAN for fine-tuning EDSR and WDSR models

It is also possible to fine-tune EDSR and WDSR x4 models with SRGAN. They can be used as drop-in replacement for the original SRGAN generator. More details in this article.

# Create EDSR generator and init with pre-trained weights
generator = edsr(scale=4, num_res_blocks=16)
generator.load_weights('weights/edsr-16-x4/weights.h5')

# Fine-tune EDSR model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
# Create WDSR B generator and init with pre-trained weights
generator = wdsr_b(scale=4, num_res_blocks=32)
generator.load_weights('weights/wdsr-b-16-32/weights.h5')

# Fine-tune WDSR B  model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
Owner
Martin Krasser
Freelance machine learning engineer, software developer and consultant. Mountainbike freerider, bass guitar player.
Martin Krasser
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022