Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Overview

Travis CI

Single Image Super-Resolution with EDSR, WDSR and SRGAN

A Tensorflow 2.x based implementation of

This is a complete re-write of the old Keras/Tensorflow 1.x based implementation available here. Some parts are still work in progress but you can already train models as described in the papers via a high-level training API. Furthermore, you can also fine-tune EDSR and WDSR models in an SRGAN context. Training and usage examples are given in the notebooks

A DIV2K data provider automatically downloads DIV2K training and validation images of given scale (2, 3, 4 or 8) and downgrade operator ("bicubic", "unknown", "mild" or "difficult").

Important: if you want to evaluate the pre-trained models with a dataset other than DIV2K please read this comment (and replies) first.

Environment setup

Create a new conda environment with

conda env create -f environment.yml

and activate it with

conda activate sisr

Introduction

You can find an introduction to single-image super-resolution in this article. It also demonstrates how EDSR and WDSR models can be fine-tuned with SRGAN (see also this section).

Getting started

Examples in this section require following pre-trained weights for running (see also example notebooks):

Pre-trained weights

  • weights-edsr-16-x4.tar.gz
    • EDSR x4 baseline as described in the EDSR paper: 16 residual blocks, 64 filters, 1.52M parameters.
    • PSNR on DIV2K validation set = 28.89 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-wdsr-b-32-x4.tar.gz
    • WDSR B x4 custom model: 32 residual blocks, 32 filters, expansion factor 6, 0.62M parameters.
    • PSNR on DIV2K validation set = 28.91 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-srgan.tar.gz
    • SRGAN as described in the SRGAN paper: 1.55M parameters, trained with VGG54 content loss.

After download, extract them in the root folder of the project with

tar xvfz weights-<...>.tar.gz

EDSR

from model import resolve_single
from model.edsr import edsr

from utils import load_image, plot_sample

model = edsr(scale=4, num_res_blocks=16)
model.load_weights('weights/edsr-16-x4/weights.h5')

lr = load_image('demo/0851x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-edsr

WDSR

from model.wdsr import wdsr_b

model = wdsr_b(scale=4, num_res_blocks=32)
model.load_weights('weights/wdsr-b-32-x4/weights.h5')

lr = load_image('demo/0829x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-wdsr

Weight normalization in WDSR models is implemented with the new WeightNormalization layer wrapper of Tensorflow Addons. In its latest version, this wrapper seems to corrupt weights when running model.predict(...). A workaround is to set model.run_eagerly = True or compile the model with model.compile(loss='mae') in advance. This issue doesn't arise when calling the model directly with model(...) though. To be further investigated ...

SRGAN

from model.srgan import generator

model = generator()
model.load_weights('weights/srgan/gan_generator.h5')

lr = load_image('demo/0869x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-srgan

DIV2K dataset

For training and validation on DIV2K images, applications should use the provided DIV2K data loader. It automatically downloads DIV2K images to .div2k directory and converts them to a different format for faster loading.

Training dataset

from data import DIV2K

train_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='train')      # Training dataset are images 001 - 800
                     
# Create a tf.data.Dataset          
train_ds = train_loader.dataset(batch_size=16,         # batch size as described in the EDSR and WDSR papers
                                random_transform=True, # random crop, flip, rotate as described in the EDSR paper
                                repeat_count=None)     # repeat iterating over training images indefinitely

# Iterate over LR/HR image pairs                                
for lr, hr in train_ds:
    # .... 

Crop size in HR images is 96x96.

Validation dataset

from data import DIV2K

valid_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='valid')      # Validation dataset are images 801 - 900
                     
# Create a tf.data.Dataset          
valid_ds = valid_loader.dataset(batch_size=1,           # use batch size of 1 as DIV2K images have different size
                                random_transform=False, # use DIV2K images in original size 
                                repeat_count=1)         # 1 epoch
                                
# Iterate over LR/HR image pairs                                
for lr, hr in valid_ds:
    # ....                                 

Training

The following training examples use the training and validation datasets described earlier. The high-level training API is designed around steps (= minibatch updates) rather than epochs to better match the descriptions in the papers.

EDSR

from model.edsr import edsr
from train import EdsrTrainer

# Create a training context for an EDSR x4 model with 16 
# residual blocks.
trainer = EdsrTrainer(model=edsr(scale=4, num_res_blocks=16), 
                      checkpoint_dir=f'.ckpt/edsr-16-x4')
                      
# Train EDSR model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)
              
# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/edsr-16-x4/weights.h5')                                    

Interrupting training and restarting it again resumes from the latest saved checkpoint. The trained Keras model can be accessed with trainer.model.

WDSR

from model.wdsr import wdsr_b
from train import WdsrTrainer

# Create a training context for a WDSR B x4 model with 32 
# residual blocks.
trainer = WdsrTrainer(model=wdsr_b(scale=4, num_res_blocks=32), 
                      checkpoint_dir=f'.ckpt/wdsr-b-8-x4')

# Train WDSR B model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)

# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/wdsr-b-32-x4/weights.h5')

SRGAN

Generator pre-training

from model.srgan import generator
from train import SrganGeneratorTrainer

# Create a training context for the generator (SRResNet) alone.
pre_trainer = SrganGeneratorTrainer(model=generator(), checkpoint_dir=f'.ckpt/pre_generator')

# Pre-train the generator with 1,000,000 steps (100,000 works fine too). 
pre_trainer.train(train_ds, valid_ds.take(10), steps=1000000, evaluate_every=1000)

# Save weights of pre-trained generator (needed for fine-tuning with GAN).
pre_trainer.model.save_weights('weights/srgan/pre_generator.h5')

Generator fine-tuning (GAN)

from model.srgan import generator, discriminator
from train import SrganTrainer

# Create a new generator and init it with pre-trained weights.
gan_generator = generator()
gan_generator.load_weights('weights/srgan/pre_generator.h5')

# Create a training context for the GAN (generator + discriminator).
gan_trainer = SrganTrainer(generator=gan_generator, discriminator=discriminator())

# Train the GAN with 200,000 steps.
gan_trainer.train(train_ds, steps=200000)

# Save weights of generator and discriminator.
gan_trainer.generator.save_weights('weights/srgan/gan_generator.h5')
gan_trainer.discriminator.save_weights('weights/srgan/gan_discriminator.h5')

SRGAN for fine-tuning EDSR and WDSR models

It is also possible to fine-tune EDSR and WDSR x4 models with SRGAN. They can be used as drop-in replacement for the original SRGAN generator. More details in this article.

# Create EDSR generator and init with pre-trained weights
generator = edsr(scale=4, num_res_blocks=16)
generator.load_weights('weights/edsr-16-x4/weights.h5')

# Fine-tune EDSR model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
# Create WDSR B generator and init with pre-trained weights
generator = wdsr_b(scale=4, num_res_blocks=32)
generator.load_weights('weights/wdsr-b-16-32/weights.h5')

# Fine-tune WDSR B  model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
Owner
Martin Krasser
Freelance machine learning engineer, software developer and consultant. Mountainbike freerider, bass guitar player.
Martin Krasser
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022