Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Overview

Travis CI

Single Image Super-Resolution with EDSR, WDSR and SRGAN

A Tensorflow 2.x based implementation of

This is a complete re-write of the old Keras/Tensorflow 1.x based implementation available here. Some parts are still work in progress but you can already train models as described in the papers via a high-level training API. Furthermore, you can also fine-tune EDSR and WDSR models in an SRGAN context. Training and usage examples are given in the notebooks

A DIV2K data provider automatically downloads DIV2K training and validation images of given scale (2, 3, 4 or 8) and downgrade operator ("bicubic", "unknown", "mild" or "difficult").

Important: if you want to evaluate the pre-trained models with a dataset other than DIV2K please read this comment (and replies) first.

Environment setup

Create a new conda environment with

conda env create -f environment.yml

and activate it with

conda activate sisr

Introduction

You can find an introduction to single-image super-resolution in this article. It also demonstrates how EDSR and WDSR models can be fine-tuned with SRGAN (see also this section).

Getting started

Examples in this section require following pre-trained weights for running (see also example notebooks):

Pre-trained weights

  • weights-edsr-16-x4.tar.gz
    • EDSR x4 baseline as described in the EDSR paper: 16 residual blocks, 64 filters, 1.52M parameters.
    • PSNR on DIV2K validation set = 28.89 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-wdsr-b-32-x4.tar.gz
    • WDSR B x4 custom model: 32 residual blocks, 32 filters, expansion factor 6, 0.62M parameters.
    • PSNR on DIV2K validation set = 28.91 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-srgan.tar.gz
    • SRGAN as described in the SRGAN paper: 1.55M parameters, trained with VGG54 content loss.

After download, extract them in the root folder of the project with

tar xvfz weights-<...>.tar.gz

EDSR

from model import resolve_single
from model.edsr import edsr

from utils import load_image, plot_sample

model = edsr(scale=4, num_res_blocks=16)
model.load_weights('weights/edsr-16-x4/weights.h5')

lr = load_image('demo/0851x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-edsr

WDSR

from model.wdsr import wdsr_b

model = wdsr_b(scale=4, num_res_blocks=32)
model.load_weights('weights/wdsr-b-32-x4/weights.h5')

lr = load_image('demo/0829x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-wdsr

Weight normalization in WDSR models is implemented with the new WeightNormalization layer wrapper of Tensorflow Addons. In its latest version, this wrapper seems to corrupt weights when running model.predict(...). A workaround is to set model.run_eagerly = True or compile the model with model.compile(loss='mae') in advance. This issue doesn't arise when calling the model directly with model(...) though. To be further investigated ...

SRGAN

from model.srgan import generator

model = generator()
model.load_weights('weights/srgan/gan_generator.h5')

lr = load_image('demo/0869x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-srgan

DIV2K dataset

For training and validation on DIV2K images, applications should use the provided DIV2K data loader. It automatically downloads DIV2K images to .div2k directory and converts them to a different format for faster loading.

Training dataset

from data import DIV2K

train_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='train')      # Training dataset are images 001 - 800
                     
# Create a tf.data.Dataset          
train_ds = train_loader.dataset(batch_size=16,         # batch size as described in the EDSR and WDSR papers
                                random_transform=True, # random crop, flip, rotate as described in the EDSR paper
                                repeat_count=None)     # repeat iterating over training images indefinitely

# Iterate over LR/HR image pairs                                
for lr, hr in train_ds:
    # .... 

Crop size in HR images is 96x96.

Validation dataset

from data import DIV2K

valid_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='valid')      # Validation dataset are images 801 - 900
                     
# Create a tf.data.Dataset          
valid_ds = valid_loader.dataset(batch_size=1,           # use batch size of 1 as DIV2K images have different size
                                random_transform=False, # use DIV2K images in original size 
                                repeat_count=1)         # 1 epoch
                                
# Iterate over LR/HR image pairs                                
for lr, hr in valid_ds:
    # ....                                 

Training

The following training examples use the training and validation datasets described earlier. The high-level training API is designed around steps (= minibatch updates) rather than epochs to better match the descriptions in the papers.

EDSR

from model.edsr import edsr
from train import EdsrTrainer

# Create a training context for an EDSR x4 model with 16 
# residual blocks.
trainer = EdsrTrainer(model=edsr(scale=4, num_res_blocks=16), 
                      checkpoint_dir=f'.ckpt/edsr-16-x4')
                      
# Train EDSR model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)
              
# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/edsr-16-x4/weights.h5')                                    

Interrupting training and restarting it again resumes from the latest saved checkpoint. The trained Keras model can be accessed with trainer.model.

WDSR

from model.wdsr import wdsr_b
from train import WdsrTrainer

# Create a training context for a WDSR B x4 model with 32 
# residual blocks.
trainer = WdsrTrainer(model=wdsr_b(scale=4, num_res_blocks=32), 
                      checkpoint_dir=f'.ckpt/wdsr-b-8-x4')

# Train WDSR B model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)

# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/wdsr-b-32-x4/weights.h5')

SRGAN

Generator pre-training

from model.srgan import generator
from train import SrganGeneratorTrainer

# Create a training context for the generator (SRResNet) alone.
pre_trainer = SrganGeneratorTrainer(model=generator(), checkpoint_dir=f'.ckpt/pre_generator')

# Pre-train the generator with 1,000,000 steps (100,000 works fine too). 
pre_trainer.train(train_ds, valid_ds.take(10), steps=1000000, evaluate_every=1000)

# Save weights of pre-trained generator (needed for fine-tuning with GAN).
pre_trainer.model.save_weights('weights/srgan/pre_generator.h5')

Generator fine-tuning (GAN)

from model.srgan import generator, discriminator
from train import SrganTrainer

# Create a new generator and init it with pre-trained weights.
gan_generator = generator()
gan_generator.load_weights('weights/srgan/pre_generator.h5')

# Create a training context for the GAN (generator + discriminator).
gan_trainer = SrganTrainer(generator=gan_generator, discriminator=discriminator())

# Train the GAN with 200,000 steps.
gan_trainer.train(train_ds, steps=200000)

# Save weights of generator and discriminator.
gan_trainer.generator.save_weights('weights/srgan/gan_generator.h5')
gan_trainer.discriminator.save_weights('weights/srgan/gan_discriminator.h5')

SRGAN for fine-tuning EDSR and WDSR models

It is also possible to fine-tune EDSR and WDSR x4 models with SRGAN. They can be used as drop-in replacement for the original SRGAN generator. More details in this article.

# Create EDSR generator and init with pre-trained weights
generator = edsr(scale=4, num_res_blocks=16)
generator.load_weights('weights/edsr-16-x4/weights.h5')

# Fine-tune EDSR model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
# Create WDSR B generator and init with pre-trained weights
generator = wdsr_b(scale=4, num_res_blocks=32)
generator.load_weights('weights/wdsr-b-16-32/weights.h5')

# Fine-tune WDSR B  model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
Owner
Martin Krasser
Freelance machine learning engineer, software developer and consultant. Mountainbike freerider, bass guitar player.
Martin Krasser
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022