Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Overview

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

This repository is the official PyTorch implementation of Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (arxiv, supplementary).

🚀 🚀 🚀 News:


Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

Requirements

  • Python 3.7, PyTorch >= 1.6, scipy >= 1.6.3
  • Requirements: opencv-python
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5

Note: this repository is based on BasicSR. Please refer to their repository for a better understanding of the code framework.

Quick Run

Download stage3_MANet+RRDB_x4.pth from release and put it in ./pretrained_models. Then, run this command:

cd codes
python test.py --opt options/test/test_stage3.yml

Data Preparation

To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used datasets can be downloaded here.

Training

Step1: to train MANet, run this command:

python train.py --opt options/train/train_stage1.yml

Step2: to train non-blind RRDB, run this command:

python train.py --opt options/train/train_stage2.yml

Step3: to fine-tune RRDB with MANet, run this command:

python train.py --opt options/train/train_stage3.yml

All trained models can be downloaded from release. For testing, downloading stage3 models is enough.

Testing

To test MANet (stage1, kernel estimation only), run this command:

python test.py --opt options/test/test_stage1.yml

To test RRDB-SFT (stage2, non-blind SR with ground-truth kernel), run this command:

python test.py --opt options/test/test_stage2.yml

To test MANet+RRDB (stage3, blind SR), run this command:

python test.py --opt options/test/test_stage3.yml

Note: above commands generate LR images on-the-fly. To generate testing sets used in the paper, run this command:

python prepare_testset.py --opt options/test/prepare_testset.yml

Interactive Exploration of Kernels

To explore spaitally variant kernels on an image, use --save_kernel and run this command to save kernel:

python test.py --opt options/test/test_stage1.yml --save_kernel

Then, run this command to creat an interactive window:

python interactive_explore.py --path ../results/001_MANet_aniso_x4_test_stage1/toy_dataset1/npz/toy1.npz

Results

We conducted experiments on both spatially variant and invariant blind SR. Please refer to the paper and supp for results.

Citation

@inproceedings{liang21manet,
  title={Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution},
  author={Liang, Jingyun and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on BasicSR, MMSR, IKC and KAIR. Please also follow their licenses. Thanks for their great works.

Comments
  • Training and OOM

    Training and OOM

    Thanks for your code. I tried to train the model with train_stage1.yml, and the Cuda OOM. I am using 2080 Ti, I tried to reduce the batch size from 16 to 2 and the GT_size from 192 to 48. However, the training still OOM. May I know is there anything I missed? Thanks.

    opened by hcleung3325 9
  • [How to get SR image by spatially variant estimated blur kernels]

    [How to get SR image by spatially variant estimated blur kernels]

    Hi, Thank you for your excellent and interesting work! I'm not so clear about the process after kernels estimation during SR reconstruction after reading your paper. Could you please explain?

    opened by CaptainEven 7
  • The method of creating kernels

    The method of creating kernels

    I noticed that the function for creating kernel ('anisotropic_gaussian_kernel_matlab') is different from the standard gaussian distribution (e.g. the method that used in IKC, https://github.com/yuanjunchai/IKC/blob/2a846cf1194cd9bace08973d55ecd8fd3179fe48/codes/utils/util.py#L244). I am wondering why a different way is used here. Actually, a test dataset created by IKC with same sigma range seems to have poor performance on MANet, and vice versa.

    opened by zhiqiangfu 3
  • [import error]

    [import error]

        k = scipy.stats.multivariate_normal.pdf(pos, mean=[0, 0], cov=cov)
    AttributeError: module 'scipy' has no attribute 'stats'
    

    scipy version error? So, which version of scipy is required?

    opened by CaptainEven 2
  • A letter from afar

    A letter from afar

    Good evening, boss! I recently discovered your work about MANet.I found that the length of the gaussian kernel your method generated is equal to 18.Does this setting have any specific meaning? image

    opened by fenghao195 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • About LR_Image PSNR/SSIM

    About LR_Image PSNR/SSIM

    Many thanks for your excellent work!

    I wonder what is the LR_Image PSNR/SSIM in the ablation study to evaluate the MANet about kernel prediction, and how to compute these?

    opened by Shaosifan 0
  • Questions about the paper

    Questions about the paper

    Thanks again for your great work. I have several questions about the paper. In Figure 2, you mentioned the input for MANet is a LR, but the input for your code seems to be DIV2K GT. Is there any further process I miss? Also, is that possible for the whole model trained in y-channel since my deployed environment only deals with y-channel? Thanks.

    opened by mrgreen3325 0
  • Issue about class BatchBlur_SV in utils.util

    Issue about class BatchBlur_SV in utils.util

    MANet/codes/utils/util.py Line 661: kernel = kernel.flatten(2).unsqueeze(0).expand(3,-1,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[1, B, HW, l^2] ->[C, B, HW, l^2] I think it is wrong, because it is not corresponding to the shape of pad.

    The line 661 should be kernel = kernel.flatten(2).unsqueeze(1).expand(-1, 3,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[B, 1, HW, l^2] ->[B, C, HW, l^2]

    opened by jiangmengyu18 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022