Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Overview

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

This repository is the official PyTorch implementation of Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (arxiv, supplementary).

🚀 🚀 🚀 News:


Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to factors such as object motion and out-of-focus. Hence, existing blind SR methods would inevitably give rise to poor performance in real applications. To address this issue, this paper proposes a mutual affine network (MANet) for spatially variant kernel estimation. Specifically, MANet has two distinctive features. First, it has a moderate receptive field so as to keep the locality of degradation. Second, it involves a new mutual affine convolution (MAConv) layer that enhances feature expressiveness without increasing receptive field, model size and computation burden. This is made possible through exploiting channel interdependence, which applies each channel split with an affine transformation module whose input are the rest channel splits. Extensive experiments on synthetic and real images show that the proposed MANet not only performs favorably for both spatially variant and invariant kernel estimation, but also leads to state-of-the-art blind SR performance when combined with non-blind SR methods.

Requirements

  • Python 3.7, PyTorch >= 1.6, scipy >= 1.6.3
  • Requirements: opencv-python
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5

Note: this repository is based on BasicSR. Please refer to their repository for a better understanding of the code framework.

Quick Run

Download stage3_MANet+RRDB_x4.pth from release and put it in ./pretrained_models. Then, run this command:

cd codes
python test.py --opt options/test/test_stage3.yml

Data Preparation

To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used datasets can be downloaded here.

Training

Step1: to train MANet, run this command:

python train.py --opt options/train/train_stage1.yml

Step2: to train non-blind RRDB, run this command:

python train.py --opt options/train/train_stage2.yml

Step3: to fine-tune RRDB with MANet, run this command:

python train.py --opt options/train/train_stage3.yml

All trained models can be downloaded from release. For testing, downloading stage3 models is enough.

Testing

To test MANet (stage1, kernel estimation only), run this command:

python test.py --opt options/test/test_stage1.yml

To test RRDB-SFT (stage2, non-blind SR with ground-truth kernel), run this command:

python test.py --opt options/test/test_stage2.yml

To test MANet+RRDB (stage3, blind SR), run this command:

python test.py --opt options/test/test_stage3.yml

Note: above commands generate LR images on-the-fly. To generate testing sets used in the paper, run this command:

python prepare_testset.py --opt options/test/prepare_testset.yml

Interactive Exploration of Kernels

To explore spaitally variant kernels on an image, use --save_kernel and run this command to save kernel:

python test.py --opt options/test/test_stage1.yml --save_kernel

Then, run this command to creat an interactive window:

python interactive_explore.py --path ../results/001_MANet_aniso_x4_test_stage1/toy_dataset1/npz/toy1.npz

Results

We conducted experiments on both spatially variant and invariant blind SR. Please refer to the paper and supp for results.

Citation

@inproceedings{liang21manet,
  title={Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution},
  author={Liang, Jingyun and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on BasicSR, MMSR, IKC and KAIR. Please also follow their licenses. Thanks for their great works.

Comments
  • Training and OOM

    Training and OOM

    Thanks for your code. I tried to train the model with train_stage1.yml, and the Cuda OOM. I am using 2080 Ti, I tried to reduce the batch size from 16 to 2 and the GT_size from 192 to 48. However, the training still OOM. May I know is there anything I missed? Thanks.

    opened by hcleung3325 9
  • [How to get SR image by spatially variant estimated blur kernels]

    [How to get SR image by spatially variant estimated blur kernels]

    Hi, Thank you for your excellent and interesting work! I'm not so clear about the process after kernels estimation during SR reconstruction after reading your paper. Could you please explain?

    opened by CaptainEven 7
  • The method of creating kernels

    The method of creating kernels

    I noticed that the function for creating kernel ('anisotropic_gaussian_kernel_matlab') is different from the standard gaussian distribution (e.g. the method that used in IKC, https://github.com/yuanjunchai/IKC/blob/2a846cf1194cd9bace08973d55ecd8fd3179fe48/codes/utils/util.py#L244). I am wondering why a different way is used here. Actually, a test dataset created by IKC with same sigma range seems to have poor performance on MANet, and vice versa.

    opened by zhiqiangfu 3
  • [import error]

    [import error]

        k = scipy.stats.multivariate_normal.pdf(pos, mean=[0, 0], cov=cov)
    AttributeError: module 'scipy' has no attribute 'stats'
    

    scipy version error? So, which version of scipy is required?

    opened by CaptainEven 2
  • A letter from afar

    A letter from afar

    Good evening, boss! I recently discovered your work about MANet.I found that the length of the gaussian kernel your method generated is equal to 18.Does this setting have any specific meaning? image

    opened by fenghao195 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • About LR_Image PSNR/SSIM

    About LR_Image PSNR/SSIM

    Many thanks for your excellent work!

    I wonder what is the LR_Image PSNR/SSIM in the ablation study to evaluate the MANet about kernel prediction, and how to compute these?

    opened by Shaosifan 0
  • Questions about the paper

    Questions about the paper

    Thanks again for your great work. I have several questions about the paper. In Figure 2, you mentioned the input for MANet is a LR, but the input for your code seems to be DIV2K GT. Is there any further process I miss? Also, is that possible for the whole model trained in y-channel since my deployed environment only deals with y-channel? Thanks.

    opened by mrgreen3325 0
  • Issue about class BatchBlur_SV in utils.util

    Issue about class BatchBlur_SV in utils.util

    MANet/codes/utils/util.py Line 661: kernel = kernel.flatten(2).unsqueeze(0).expand(3,-1,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[1, B, HW, l^2] ->[C, B, HW, l^2] I think it is wrong, because it is not corresponding to the shape of pad.

    The line 661 should be kernel = kernel.flatten(2).unsqueeze(1).expand(-1, 3,-1,-1) The kernel shape: [B, HW, l, l] ->[B, HW, l^2] ->[B, 1, HW, l^2] ->[B, C, HW, l^2]

    opened by jiangmengyu18 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022