an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

Overview

3d-ken-burns

This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates this still image with a virtual camera scan and zoom subject to motion parallax. Should you be making use of our work, please cite our paper [1].

Paper

setup

Several functions are implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. Please also make sure to have the CUDA_HOME environment variable configured.

In order to generate the video results, please also make sure to have pip install moviepy installed.

usage

To run it on an image and generate the 3D Ken Burns effect fully automatically, use the following command.

python autozoom.py --in ./images/doublestrike.jpg --out ./autozoom.mp4

To start the interface that allows you to manually adjust the camera path, use the following command. You can then navigate to http://localhost:8080/ and load an image using the button on the bottom right corner. Please be patient when loading an image and saving the result, there is a bit of background processing going on.

python interface.py

To run the depth estimation to obtain the raw depth estimate, use the following command. Please note that this script does not perform the depth adjustment, see #22 for information on how to add it.

python depthestim.py --in ./images/doublestrike.jpg --out ./depthestim.npy

To benchmark the depth estimation, run python benchmark-ibims.py or python benchmark-nyu.py. You can use it to easily verify that the provided implementation runs as expected.

colab

If you do not have a suitable environment to run this projects then you could give Colab a try. It allows you to run the project in the cloud, free of charge. There are several people who provide Colab notebooks that should get you started. A few that I am aware of include one from Arnaldo Gabriel, one from Vlad Alex, and one from Ahmed Harmouche.

dataset

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

scene mode color depth normal
asdf flying 3.7 GB 1.0 GB 2.9 GB
asdf walking 3.6 GB 0.9 GB 2.7 GB
blank flying 3.2 GB 1.0 GB 2.8 GB
blank walking 3.0 GB 0.9 GB 2.7 GB
chill flying 5.4 GB 1.1 GB 10.8 GB
chill walking 5.2 GB 1.0 GB 10.5 GB
city flying 0.8 GB 0.2 GB 0.9 GB
city walking 0.7 GB 0.2 GB 0.8 GB
environment flying 1.9 GB 0.5 GB 3.5 GB
environment walking 1.8 GB 0.5 GB 3.3 GB
fort flying 5.0 GB 1.1 GB 9.2 GB
fort walking 4.9 GB 1.1 GB 9.3 GB
grass flying 1.1 GB 0.2 GB 1.9 GB
grass walking 1.1 GB 0.2 GB 1.6 GB
ice flying 1.2 GB 0.2 GB 2.1 GB
ice walking 1.2 GB 0.2 GB 2.0 GB
knights flying 0.8 GB 0.2 GB 1.0 GB
knights walking 0.8 GB 0.2 GB 0.9 GB
outpost flying 4.8 GB 1.1 GB 7.9 GB
outpost walking 4.6 GB 1.0 GB 7.4 GB
pirates flying 0.8 GB 0.2 GB 0.8 GB
pirates walking 0.7 GB 0.2 GB 0.8 GB
shooter flying 0.9 GB 0.2 GB 1.1 GB
shooter walking 0.9 GB 0.2 GB 1.0 GB
shops flying 0.2 GB 0.1 GB 0.2 GB
shops walking 0.2 GB 0.1 GB 0.2 GB
slums flying 0.5 GB 0.1 GB 0.8 GB
slums walking 0.5 GB 0.1 GB 0.7 GB
subway flying 0.5 GB 0.1 GB 0.9 GB
subway walking 0.5 GB 0.1 GB 0.9 GB
temple flying 1.7 GB 0.4 GB 3.1 GB
temple walking 1.7 GB 0.3 GB 2.8 GB
titan flying 6.2 GB 1.1 GB 11.5 GB
titan walking 6.0 GB 1.1 GB 11.3 GB
town flying 1.7 GB 0.3 GB 3.0 GB
town walking 1.8 GB 0.3 GB 3.0 GB
underland flying 5.4 GB 1.2 GB 12.1 GB
underland walking 5.1 GB 1.2 GB 11.4 GB
victorian flying 0.5 GB 0.1 GB 0.8 GB
victorian walking 0.4 GB 0.1 GB 0.7 GB
village flying 1.6 GB 0.3 GB 2.8 GB
village walking 1.6 GB 0.3 GB 2.7 GB
warehouse flying 0.9 GB 0.2 GB 1.5 GB
warehouse walking 0.8 GB 0.2 GB 1.4 GB
western flying 0.8 GB 0.2 GB 0.9 GB
western walking 0.7 GB 0.2 GB 0.8 GB

Please note that this is an updated version of the dataset that we have used in our paper. So while it has fewer scenes in total, each sample capture now has a varying focal length which should help with generalizability. Furthermore, some examples are either over- or under-exposed and it would be a good idea to remove these outliers. Please see #37, #39, and #40 for supplementary discussions.

video

Video

license

This is a project by Adobe Research. It is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

references

[1]  @article{Niklaus_TOG_2019,
         author = {Simon Niklaus and Long Mai and Jimei Yang and Feng Liu},
         title = {3D Ken Burns Effect from a Single Image},
         journal = {ACM Transactions on Graphics},
         volume = {38},
         number = {6},
         pages = {184:1--184:15},
         year = {2019}
     }

acknowledgment

The video above uses materials under a Creative Common license or with the owner's permission, as detailed at the end.

Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022