an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

Overview

3d-ken-burns

This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates this still image with a virtual camera scan and zoom subject to motion parallax. Should you be making use of our work, please cite our paper [1].

Paper

setup

Several functions are implemented in CUDA using CuPy, which is why CuPy is a required dependency. It can be installed using pip install cupy or alternatively using one of the provided binary packages as outlined in the CuPy repository. Please also make sure to have the CUDA_HOME environment variable configured.

In order to generate the video results, please also make sure to have pip install moviepy installed.

usage

To run it on an image and generate the 3D Ken Burns effect fully automatically, use the following command.

python autozoom.py --in ./images/doublestrike.jpg --out ./autozoom.mp4

To start the interface that allows you to manually adjust the camera path, use the following command. You can then navigate to http://localhost:8080/ and load an image using the button on the bottom right corner. Please be patient when loading an image and saving the result, there is a bit of background processing going on.

python interface.py

To run the depth estimation to obtain the raw depth estimate, use the following command. Please note that this script does not perform the depth adjustment, see #22 for information on how to add it.

python depthestim.py --in ./images/doublestrike.jpg --out ./depthestim.npy

To benchmark the depth estimation, run python benchmark-ibims.py or python benchmark-nyu.py. You can use it to easily verify that the provided implementation runs as expected.

colab

If you do not have a suitable environment to run this projects then you could give Colab a try. It allows you to run the project in the cloud, free of charge. There are several people who provide Colab notebooks that should get you started. A few that I am aware of include one from Arnaldo Gabriel, one from Vlad Alex, and one from Ahmed Harmouche.

dataset

This dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

scene mode color depth normal
asdf flying 3.7 GB 1.0 GB 2.9 GB
asdf walking 3.6 GB 0.9 GB 2.7 GB
blank flying 3.2 GB 1.0 GB 2.8 GB
blank walking 3.0 GB 0.9 GB 2.7 GB
chill flying 5.4 GB 1.1 GB 10.8 GB
chill walking 5.2 GB 1.0 GB 10.5 GB
city flying 0.8 GB 0.2 GB 0.9 GB
city walking 0.7 GB 0.2 GB 0.8 GB
environment flying 1.9 GB 0.5 GB 3.5 GB
environment walking 1.8 GB 0.5 GB 3.3 GB
fort flying 5.0 GB 1.1 GB 9.2 GB
fort walking 4.9 GB 1.1 GB 9.3 GB
grass flying 1.1 GB 0.2 GB 1.9 GB
grass walking 1.1 GB 0.2 GB 1.6 GB
ice flying 1.2 GB 0.2 GB 2.1 GB
ice walking 1.2 GB 0.2 GB 2.0 GB
knights flying 0.8 GB 0.2 GB 1.0 GB
knights walking 0.8 GB 0.2 GB 0.9 GB
outpost flying 4.8 GB 1.1 GB 7.9 GB
outpost walking 4.6 GB 1.0 GB 7.4 GB
pirates flying 0.8 GB 0.2 GB 0.8 GB
pirates walking 0.7 GB 0.2 GB 0.8 GB
shooter flying 0.9 GB 0.2 GB 1.1 GB
shooter walking 0.9 GB 0.2 GB 1.0 GB
shops flying 0.2 GB 0.1 GB 0.2 GB
shops walking 0.2 GB 0.1 GB 0.2 GB
slums flying 0.5 GB 0.1 GB 0.8 GB
slums walking 0.5 GB 0.1 GB 0.7 GB
subway flying 0.5 GB 0.1 GB 0.9 GB
subway walking 0.5 GB 0.1 GB 0.9 GB
temple flying 1.7 GB 0.4 GB 3.1 GB
temple walking 1.7 GB 0.3 GB 2.8 GB
titan flying 6.2 GB 1.1 GB 11.5 GB
titan walking 6.0 GB 1.1 GB 11.3 GB
town flying 1.7 GB 0.3 GB 3.0 GB
town walking 1.8 GB 0.3 GB 3.0 GB
underland flying 5.4 GB 1.2 GB 12.1 GB
underland walking 5.1 GB 1.2 GB 11.4 GB
victorian flying 0.5 GB 0.1 GB 0.8 GB
victorian walking 0.4 GB 0.1 GB 0.7 GB
village flying 1.6 GB 0.3 GB 2.8 GB
village walking 1.6 GB 0.3 GB 2.7 GB
warehouse flying 0.9 GB 0.2 GB 1.5 GB
warehouse walking 0.8 GB 0.2 GB 1.4 GB
western flying 0.8 GB 0.2 GB 0.9 GB
western walking 0.7 GB 0.2 GB 0.8 GB

Please note that this is an updated version of the dataset that we have used in our paper. So while it has fewer scenes in total, each sample capture now has a varying focal length which should help with generalizability. Furthermore, some examples are either over- or under-exposed and it would be a good idea to remove these outliers. Please see #37, #39, and #40 for supplementary discussions.

video

Video

license

This is a project by Adobe Research. It is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (CC BY-NC-SA 4.0) and may only be used for non-commercial purposes. Please see the LICENSE file for more information.

references

[1]  @article{Niklaus_TOG_2019,
         author = {Simon Niklaus and Long Mai and Jimei Yang and Feng Liu},
         title = {3D Ken Burns Effect from a Single Image},
         journal = {ACM Transactions on Graphics},
         volume = {38},
         number = {6},
         pages = {184:1--184:15},
         year = {2019}
     }

acknowledgment

The video above uses materials under a Creative Common license or with the owner's permission, as detailed at the end.

Owner
Simon Niklaus
Research Scientist at Adobe
Simon Niklaus
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022