Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Overview

Memory-Efficient Multi-Level In-Situ Generation (MLG)

By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan.

This repo is the official implementation of "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation".

Introduction

MLG is a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations, directly translating to performance improvement. MLG explores the intrinsic correlations and bit-level redundancy within DNN kernels and propose a multi-level in situ generation mechanism with mixed-precision bases to achieve on-the-fly recovery of high-resolution parameters with minimum hardware overhead. MLG can boost the memory efficiency by 10-20× with comparable accuracy over four state-of-theart designs, when benchmarked on ResNet-18/DenseNet121/MobileNetV2/V3 with various tasks

flow

We explore intra-kernel and cross-kernel correlation in the accuracy (blue curve) and memory compression ratio (black curve) space with ResNet18/CIFAR-10. Our method generalizes prior DSConv and Blueprint Conv with better efficiency-performance trade-off. teaser

On CIFAR-10/100 and ResNet-18/DenseNet-121, we surpass prior low-rank methods with 10-20x less weight storage cost. exp

Dependencies

  • Python >= 3.6
  • pyutils >= 0.0.1. See pyutils for installation.
  • pytorch-onn >= 0.0.2. See pytorch-onn for installation.
  • Python libraries listed in requirements.txt
  • NVIDIA GPUs and CUDA >= 10.2

Structures

  • core/
    • models/
      • layers/
        • mlg_conv2d and mlg_linear: MLG layer definition
      • resnet.py: MLG-based ResNet definition
      • model_base.py: base model definition with all model utilities
    • builder.py: build training utilities
  • configs: YAML-based config files
  • scripts/: contains experiment scripts
  • train.py: training logic

Usage

  • Pretrain teacher model.
    > python3 train.py configs/cifar10/resnet18/train/pretrain.yml

  • Train MLG-based student model with L2-norm-based projection, knowledge distillation, multi-level orthonormality regularization, (Bi, Bo, qb, qu, qv) = (2, 44, 3, 6, 3).
    > python3 train.py configs/cifar10/resnet18/train/train.yml --teacher.checkpoint=path-to-teacher-ckpt --mlg.projection_alg=train --mlg.kd=1 --mlg.base_in=2 --mlg.base_out=44 --mlg.basis_bit=3 --mlg.coeff_in_bit=6 --mlg.coeff_out_bit=3 --criterion.ortho_weight_loss=0.05

  • Scripts for experiments are in ./scripts. For example, to run teacher model pretraining, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/pretrain.py and run
    > python3 SCRIPT

  • To train ML-based student model with KD and projection, you can write proper task setting in SCRIPT=scripts/cifar10/resnet18/train.py (need to provide the pretrained teacher checkpoint) and run
    > python3 SCRIPT

Citing Memory-Efficient Multi-Level In-Situ Generation (MLG)

@inproceedings{gu2021MLG,
  title={Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation},
  author={Jiaqi Gu and Hanqing Zhu and Chenghao Feng and Mingjie Liu and Zixuan Jiang and Ray T. Chen and David Z. Pan},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Related Papers

  • Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen, David Z. Pan, "Towards Memory-Efficient Neural Networks via Multi-Level in situ Generation," ICCV, 2021. [paper | slides]
Owner
Jiaqi Gu
PhD Student at UT Austin
Jiaqi Gu
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023