Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Related tags

Deep LearningPyRAI2MD
Overview

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

                              /\
   |\    /|                  /++\
   ||\  /||                 /++++\
   || \/ || ||             /++++++\
   ||    || ||            /PyRAI2MD\
   ||    || ||           /++++++++++\                    __
            ||          /++++++++++++\    |\ |  /\  |\/| | \
            ||__ __    *==============*   | \| /--\ |  | |_/

                          Python Rapid
                     Artificial Intelligence
                  Ab Initio Molecular Dynamics



                      Author @Jingbai Li
               Northeastern University, Boston, USA

                          version:   2.0 alpha
                          

  With contriutions from (in alphabetic order):
    Jingbai Li                 - Fewest switches surface hopping
                                 Zhu-Nakamura surface hopping
                                 Velocity Verlet
                                 OpenMolcas interface
                                 OpenMolcas/Tinker interface
                                 BAGEL interface
                                 Adaptive sampling
                                 Grid search
                                 Two-layer ONIOM (coming soon)
                                 Periodic boundary condition (coming soon)
                                 QC/ML hybrid NAMD

    Patrick Reiser             - Neural networks (pyNNsMD)

  Special acknowledgement to:
    Steven A. Lopez            - Project directorship
    Pascal Friederich          - ML directoriship>

Features

  • Machine learning nonadibatic molecular dyanmics (ML-NAMD).
  • Neural network training and grid search.
  • Active learning with ML-NAMD trajectories.
  • Support BAGEL, Molcas for QM, and Molcas/Tinker for QM/MM calculations.
  • Support nonadibatic coupling and spin-orbit coupling (Molcas only)

Prerequisite

  • Python >=3.7 PyRAI2MD is written and tested in Python 3.7.4. Older version of Python is not tested and might not be working properly.
  • TensorFlow >=2.2 TensorFlow/Keras API is required to load the trained NN models and predict energy and force.
  • Cython PyRAI2MD uses Cython library for efficient surface hopping calculation.
  • Matplotlib/Numpy Scientifc graphing and numerical library for plotting training statistic and array manipulation.

Content

 File/Folder Name                                  Description                                      
---------------------------------------------------------------------------------------------------
 pyrai2md.py                                       PyRAI2MD interface                              
 PyRAI2MD                                          source codes folder
  |--variables.py                                  PyRAI2MD input reader                           
  |--method.py                                     PyRAI2MD method manager                         
  |--Molecule                                      atom, molecule, trajectory code folder
  |   |--atom.py                                   atomic properties class                         
  |   |--molecule.py                               molecular properties class                      
  |   |--trajectory.py                             trajectory properties class                     
  |   |--pbc_helper.py                             periodic boundary condition functions           
  |    `-qmmm_helper.py                            qmmm functions                                  
  |
  |--Quantum_Chemistry                             quantum chemicial program interface folder
  |   |--qc_molcas.py                              OpenMolcas interface                            
  |   |--qc_bagel.py                               BAGEL interface                                 
  |    `-qc_molcas_tinker                          OpenMolcas/Tinker interface                     
  |
  |--Machine_Learning                              machine learning library interface folder
  |   |--training_data.py                          training data manager                           
  |   |--model_NN.py                               neural network interface                        
  |   |--hypernn.py                                hyperparameter manager                          
  |   |--permutation.py                            data permutation functions                      
  |   |--adaptive_sampling.py                      adaptive sampling class                         
  |   |--grid_search.py                            grid search class                               
  |   |--remote_train.py                           distribute remote training                      
  |    `-pyNNsMD                                   neural network library                         
  |
  |--Dynamics                                      ab initio molecular dynamics code folder
  |   |--aimd.py                                   molecular dynamics class                        
  |   |--mixaimd.py                                ML-QC hybrid molecular dynamics class           
  |   |--single_point.py                           single point calculation                        
  |   |--hop_probability.py                        surface hopping probability calculation         
  |   |--reset_velocity.py                         velocity adjustment functions                   
  |   |--verlet.py                                 velocity verlet method                          
  |   |--Ensembles                                 thermodynamics control code folder
  |   |   |--ensemble.py                           thermodynamics ensemble manager                 
  |   |   |--microcanonical.py                     microcanonical ensemble                         
  |   |    `-thermostat.py                         canonical ensemble                              
  |   |
  |    `-Propagators                               electronic propagation code folder
  |       |--surface_hopping.py                    surface hopping manager                         
  |       |--fssh.pyx                              fewest switches surface hopping method          
  |       |--gsh.py                                generalized surface hopping method              
  |        `-tsh_helper.py                         trajectory surface hopping tools                
  |
   `-Utils                                         utility folder
      |--aligngeom.py                              geometry aligment and comparison functions      
      |--coordinates.py                            coordinates writing functions                   
      |--read_tools.py                             index reader                                    
      |--bonds.py                                  bond length library                            
      |--sampling.py                               initial condition sampling functions            
      |--timing.py                                 timing functions                                
       `-logo.py                                   logo and credits                                    

Installation

Download the repository

git clone https://github.com/lopez-lab/PyRAI2MD.git

Specify environment variable of PyRAI2MD

export PYRAI2MD=/path/to/PyRAI2MD

Test PyRAI2MD

Copy the test script and modify environment variables

cp $PYRAI2MD/Tool/test_PyRAI2MD.sh .
bash test_PyRAI2MD.sh

Or directly run if environment variables are set

$PYRAI2MD/pyrai2md.py quicktest

Run PyRAI2MD

$PYRAI2MD/pyrai2md.py input

User manual

We are currently working on the user manual.

Cite us

  • Jingbai Li, Patrick Reiser, Benjamin R. Boswell, André Eberhard, Noah Z. Burns, Pascal Friederich, and Steven A. Lopez, "Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations", Chem. Sci. 2021. DOI: 10.1039/D0SC05610C
  • Jingbai Li, Rachel Stein, Daniel Adrion, Steven A. Lopez, "Machine-learning photodynamics simulations uncover the role of substituent effects on the photochemical formation of cubanes", ChemRxiv, preprint, DOI:10.33774/chemrxiv-2021-lxsjk
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration

This repo is for the paper: Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration The DAC environment is based on the Dynam

Carola Doerr 1 Aug 19, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022