Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Related tags

Deep LearningPyRAI2MD
Overview

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

                              /\
   |\    /|                  /++\
   ||\  /||                 /++++\
   || \/ || ||             /++++++\
   ||    || ||            /PyRAI2MD\
   ||    || ||           /++++++++++\                    __
            ||          /++++++++++++\    |\ |  /\  |\/| | \
            ||__ __    *==============*   | \| /--\ |  | |_/

                          Python Rapid
                     Artificial Intelligence
                  Ab Initio Molecular Dynamics



                      Author @Jingbai Li
               Northeastern University, Boston, USA

                          version:   2.0 alpha
                          

  With contriutions from (in alphabetic order):
    Jingbai Li                 - Fewest switches surface hopping
                                 Zhu-Nakamura surface hopping
                                 Velocity Verlet
                                 OpenMolcas interface
                                 OpenMolcas/Tinker interface
                                 BAGEL interface
                                 Adaptive sampling
                                 Grid search
                                 Two-layer ONIOM (coming soon)
                                 Periodic boundary condition (coming soon)
                                 QC/ML hybrid NAMD

    Patrick Reiser             - Neural networks (pyNNsMD)

  Special acknowledgement to:
    Steven A. Lopez            - Project directorship
    Pascal Friederich          - ML directoriship>

Features

  • Machine learning nonadibatic molecular dyanmics (ML-NAMD).
  • Neural network training and grid search.
  • Active learning with ML-NAMD trajectories.
  • Support BAGEL, Molcas for QM, and Molcas/Tinker for QM/MM calculations.
  • Support nonadibatic coupling and spin-orbit coupling (Molcas only)

Prerequisite

  • Python >=3.7 PyRAI2MD is written and tested in Python 3.7.4. Older version of Python is not tested and might not be working properly.
  • TensorFlow >=2.2 TensorFlow/Keras API is required to load the trained NN models and predict energy and force.
  • Cython PyRAI2MD uses Cython library for efficient surface hopping calculation.
  • Matplotlib/Numpy Scientifc graphing and numerical library for plotting training statistic and array manipulation.

Content

 File/Folder Name                                  Description                                      
---------------------------------------------------------------------------------------------------
 pyrai2md.py                                       PyRAI2MD interface                              
 PyRAI2MD                                          source codes folder
  |--variables.py                                  PyRAI2MD input reader                           
  |--method.py                                     PyRAI2MD method manager                         
  |--Molecule                                      atom, molecule, trajectory code folder
  |   |--atom.py                                   atomic properties class                         
  |   |--molecule.py                               molecular properties class                      
  |   |--trajectory.py                             trajectory properties class                     
  |   |--pbc_helper.py                             periodic boundary condition functions           
  |    `-qmmm_helper.py                            qmmm functions                                  
  |
  |--Quantum_Chemistry                             quantum chemicial program interface folder
  |   |--qc_molcas.py                              OpenMolcas interface                            
  |   |--qc_bagel.py                               BAGEL interface                                 
  |    `-qc_molcas_tinker                          OpenMolcas/Tinker interface                     
  |
  |--Machine_Learning                              machine learning library interface folder
  |   |--training_data.py                          training data manager                           
  |   |--model_NN.py                               neural network interface                        
  |   |--hypernn.py                                hyperparameter manager                          
  |   |--permutation.py                            data permutation functions                      
  |   |--adaptive_sampling.py                      adaptive sampling class                         
  |   |--grid_search.py                            grid search class                               
  |   |--remote_train.py                           distribute remote training                      
  |    `-pyNNsMD                                   neural network library                         
  |
  |--Dynamics                                      ab initio molecular dynamics code folder
  |   |--aimd.py                                   molecular dynamics class                        
  |   |--mixaimd.py                                ML-QC hybrid molecular dynamics class           
  |   |--single_point.py                           single point calculation                        
  |   |--hop_probability.py                        surface hopping probability calculation         
  |   |--reset_velocity.py                         velocity adjustment functions                   
  |   |--verlet.py                                 velocity verlet method                          
  |   |--Ensembles                                 thermodynamics control code folder
  |   |   |--ensemble.py                           thermodynamics ensemble manager                 
  |   |   |--microcanonical.py                     microcanonical ensemble                         
  |   |    `-thermostat.py                         canonical ensemble                              
  |   |
  |    `-Propagators                               electronic propagation code folder
  |       |--surface_hopping.py                    surface hopping manager                         
  |       |--fssh.pyx                              fewest switches surface hopping method          
  |       |--gsh.py                                generalized surface hopping method              
  |        `-tsh_helper.py                         trajectory surface hopping tools                
  |
   `-Utils                                         utility folder
      |--aligngeom.py                              geometry aligment and comparison functions      
      |--coordinates.py                            coordinates writing functions                   
      |--read_tools.py                             index reader                                    
      |--bonds.py                                  bond length library                            
      |--sampling.py                               initial condition sampling functions            
      |--timing.py                                 timing functions                                
       `-logo.py                                   logo and credits                                    

Installation

Download the repository

git clone https://github.com/lopez-lab/PyRAI2MD.git

Specify environment variable of PyRAI2MD

export PYRAI2MD=/path/to/PyRAI2MD

Test PyRAI2MD

Copy the test script and modify environment variables

cp $PYRAI2MD/Tool/test_PyRAI2MD.sh .
bash test_PyRAI2MD.sh

Or directly run if environment variables are set

$PYRAI2MD/pyrai2md.py quicktest

Run PyRAI2MD

$PYRAI2MD/pyrai2md.py input

User manual

We are currently working on the user manual.

Cite us

  • Jingbai Li, Patrick Reiser, Benjamin R. Boswell, André Eberhard, Noah Z. Burns, Pascal Friederich, and Steven A. Lopez, "Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations", Chem. Sci. 2021. DOI: 10.1039/D0SC05610C
  • Jingbai Li, Rachel Stein, Daniel Adrion, Steven A. Lopez, "Machine-learning photodynamics simulations uncover the role of substituent effects on the photochemical formation of cubanes", ChemRxiv, preprint, DOI:10.33774/chemrxiv-2021-lxsjk
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022