Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

Overview

MUC

Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

Performance

Details for Accuracy:

| Dataset    | [email protected]  | [email protected]   | [email protected]     | 
| ---------- | ------------| -------------| ---------------| 
| Foursquare | 0.8389      | 0.9105       | 0.9368         | 
| Gowalla    | 0.7522      | 0.846        | 0.8866         | 
  • The performance of our framework on Foursquare and Gowalla.

The performance of our framework on Foursquare and Gowalla

Requirements

  • python==3.7

Datasets

We use two real-world LBSN datasets from Foursquare and Gowalla.

Statistics:

| Dataset    | Number of users | Number of POIs | Number of check-ins    | Number of social links  |
| ---------- | --------------- | -------------- | ---------------------- |-------------------------|
| Foursquare | 11,326          | 182,968        | 1,385,223              | 47,164                  |
| Gowalla    | 107,092         | 1,280,969      | 6,442,890              | 950,327                 |

- Foursquare_MUC: Foursquare contains check-in data ranging from January 2011 to July 2011. 

- Gowalla_MUC: Gowalla includes check-in data between Feb. 2009 and Oct 2010.

How to run MUC model

1.python loc_prodict_Foursquare.py
2.python loc_prodict_Gowalla.py

Citation

Please cite our paper if you use the code or datasets:

@inproceedings{SuLTXH18,
  title={Next Check-in Location Prediction via Footprints and Friendship on Location-Based Social Networks},
  author={Yijun Su, Xiang Li,  Wei Tang, Ji Xiang and Neng Gao},
  booktitle={IEEE International Conference on Mobile Data Management, {MDM} 2018}, 
  pages={251-256},
  doi={10.1109/MDM.2018.00044},
  year={2018}
}

Contact

If you have any questions, please contact us by [email protected], we will be happy to assist.

Last Update Date: November 18, 2021

Owner
Yijun Su
AI Researcher at JD. Research interest: Location-based Service, Recommender Systems, Spatio-Temporal Data Mining, Knowledge Graphs, Graph Neural Network.
Yijun Su
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022