Multi-agent reinforcement learning algorithm and environment

Overview

Multi-agent reinforcement learning algorithm and environment

[en/cn]

Pytorch implements multi-agent reinforcement learning algorithms including IQL, QMIX, VDN, COMA, QTRAN (QTRAN-Base and QTRAN-Alt), MAVEN, CommNet, DYMA-Cl, and G2ANet, which are among the most advanced MARL algorithms. SMAC is a decentralized micromanagement scenario for StarCraft II.

Project Address: https://github.com/starry-sky6688/StarCraft

Run:

python main.py --map=3m --alg=qmix

Run directly, and then the algorithm will start training on the map.

MRL environment configuration Starcraft II environment: https://github.com/oxwhirl/smac

Install StarCraft II

SMAC based on the complete game of StarCraft II (version >= 3.16.1). To install the game, follow the command below.

  1. Linux

Please use [blizzard repository] (https://github.com/Blizzard/s2client-proto#downloads) download the Linux version of starcraft II. By default, the game should be in a directory. This can be changed by setting environment variables. ~/StarCraftII/SC2PATH

  1. MacOS/Windows

From Battle.net, please install [starcraft II] (https://starcraft2.com/zh-tw/). The free starter version is also available. If you use the default installation location, PySC2 will find the latest binaries. Otherwise, like the Linux version, you need to set the environment variables with the correct location of the game. SC2PATH

SMAC map

SMAC consists of a number of battle scenarios with pre-configured maps. Before SMAC can be used, these maps need to be downloaded into the StarCraft II directory. Maps

Download the [SMAC map] (https://github.com/oxwhirl/smac/releases/download/v0.1-beta1/SMAC_Maps.zip) and unzip it to your directory. If you have SMAC installed with Git, simply copy the directory from the directory to the directory.

Create a new folder Maps under the root directory

Save the file to the StarCraft Maps folder.

run

python main.py --map=3m --alg=qmix

Environment configuration, feel a bit of a problem, actually change the python folder in the address, do not need to configure any environment variables. Error file, click to find C: change to F: can be.

result

Win 8 times on average, run 3m independently --difficulty=7(VeryHard)

MADDPG

Git are not running, found on the test for a long time, on the basis of the https://github.com/starry-sky6688/MADDPG changed, run successfully.

multi-agent environment

MPE Installation Method 1:

cd into the root directory and type pip install -e .

2 installation method 2: https://www.pettingzoo.ml/mpe

pip install pettingzoo[mpe]

Requirements

Python = 3.6.5 Multi-Agent Particle Environment(MPE) The torch = 1.1.0

result

python main.py --scenario-name=simple_tag --evaluate-episodes=10

Py --scenario-name=simple_tag --evaluate-episodes=10

Modify the 'simple_tag' replacement environment.

result

In this task, two blue agents gain a reward by minimizing their closest approach to a green landmark (only one needs to get close enough for the best reward), while maximizing the distance between a red opponent and the green landmark. Red opponents are rewarded by minimizing their distance from green landmarks; However, in any given trial, it doesn't know which landmark is green, so it must follow the blue proxy. Therefore, the blue agent should learn to trick the red agent by overwriting two landmarks.

Owner
万鲲鹏
万鲲鹏
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
TF Image Segmentation: Image Segmentation framework

TF Image Segmentation: Image Segmentation framework The aim of the TF Image Segmentation framework is to provide/provide a simplified way for: Convert

Daniil Pakhomov 546 Dec 17, 2022