PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

Overview

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?"

Install // Datasets // Experiments // Models // License // Reference

Full video

Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Installation

We recommend using docker (see nvidia-docker2 instructions) to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04):

git clone https://github.com/TRI-ML/dd3d.git
cd dd3d
# If you want to use docker (recommended)
make docker-build # CUDA 10.2
# Alternative docker image for cuda 11.1
# make docker-build DOCKERFILE=Dockerfile-cu111

Please check the version of your nvidia driver and cuda compatibility to determine which Dockerfile to use.

We will list below all commands as if run directly inside our container. To run any of the commands in a container, you can either start the container in interactive mode with make docker-dev to land in a shell where you can type those commands, or you can do it in one step:

" # multi GPU make docker-run-mpi COMMAND=" "">
# single GPU
make docker-run COMMAND="
     
      "
     
# multi GPU
make docker-run-mpi COMMAND="
     
      "
     

If you want to use features related to AWS (for caching the output directory) and Weights & Biases (for experiment management/visualization), then you should create associated accounts and configure your shell with the following environment variables before building the docker image:

" export AWS_ACCESS_KEY_ID=" " export AWS_DEFAULT_REGION=" " export WANDB_ENTITY=" " export WANDB_API_KEY=" "">
export AWS_SECRET_ACCESS_KEY="
        
         "
        
export AWS_ACCESS_KEY_ID="
        
         "
        
export AWS_DEFAULT_REGION="
        
         "
        
export WANDB_ENTITY="
        
         "
        
export WANDB_API_KEY="
        
         "
        

You should also enable these features in configuration, such as WANDB.ENABLED and SYNC_OUTPUT_DIR_S3.ENABLED.

Datasets

By default, datasets are assumed to be downloaded in /data/datasets/ (can be a symbolic link). The dataset root is configurable by DATASET_ROOT.

KITTI

The KITTI 3D dataset used in our experiments can be downloaded from the KITTI website. For convenience, we provide the standard splits used in 3DOP for training and evaluation:

# download a standard splits subset of KITTI
curl -s https://tri-ml-public.s3.amazonaws.com/github/dd3d/mv3d_kitti_splits.tar | sudo tar xv -C /data/datasets/KITTI3D

The dataset must be organized as follows:


   
    
    └── KITTI3D
        ├── mv3d_kitti_splits
        │   ├── test.txt
        │   ├── train.txt
        │   ├── trainval.txt
        │   └── val.txt
        ├── testing
        │   ├── calib
        |   │   ├── 000000.txt
        |   │   ├── 000001.txt
        |   │   └── ...
        │   └── image_2
        │       ├── 000000.png
        │       ├── 000001.png
        │       └── ...
        └── training
            ├── calib
            │   ├── 000000.txt
            │   ├── 000001.txt
            │   └── ...
            ├── image_2
            │   ├── 000000.png
            │   ├── 000001.png
            │   └── ...
            └── label_2
                ├── 000000.txt
                ├── 000001.txt
                └── ..

   

nuScenes

The nuScenes dataset (v1.0) can be downloaded from the nuScenes website. The dataset must be organized as follows:


   
    
    └── nuScenes
        ├── samples
        │   ├── CAM_FRONT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243012465.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243512465.jpg
        │   │   ├── ...
        │   │  
        │   ├── CAM_FRONT_LEFT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243004917.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243504917.jpg
        │   │   ├── ...
        │   │  
        │   ├── ...
        │  
        ├── v1.0-trainval
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-test
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-mini
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...

   

Pre-trained DD3D models

The DD3D models pre-trained on dense depth estimation using DDAD15M can be downloaded here:

backbone download
DLA34 model
V2-99 model

(Optional) Eigen-clean subset of KITTI raw.

To train our Pseudo-Lidar detector, we curated a new subset of KITTI (raw) dataset and use it to fine-tune its depth network. This subset can be downloaded here. Each row contains left and right image pairs. The KITTI raw dataset can be download here.

Validating installation

To validate and visualize the dataloader (including data augmentation), run the following:

./scripts/visualize_dataloader.py +experiments=dd3d_kitti_dla34 SOLVER.IMS_PER_BATCH=4

To validate the entire training loop (including evaluation and visualization), run the overfit experiment (trained on test set):

./scripts/train.py +experiments=dd3d_kitti_dla34_overfit
experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 6 0.25 log 84.54 88.83 model

Experiments

Configuration

We use hydra to configure experiments, specifically following this pattern to organize and compose configurations. The experiments under configs/experiments describe the delta from the default configuration, and can be run as follows:

# omit the '.yaml' extension from the experiment file.
./scripts/train.py +experiments=<experiment-file> <config-override>

The configuration is modularized by various components such as datasets, backbones, evaluators, and visualizers, etc.

Using multiple GPUs

The training script supports (single-node) multi-GPU for training and evaluation via mpirun. This is most conveniently executed by the make docker-run-mpi command (see above). Internally, IMS_PER_BATCH parameters of the optimizer and the evaluator denote the total size of batch that is sharded across available GPUs while training or evaluating. They are required to be set as a multuple of available GPUs.

Evaluation

One can run only evaluation using the pretrained models:

./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model>
# use smaller batch size for single-gpu
./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model> TEST.IMS_PER_BATCH=4

Gradient accumulation

If you have insufficient GPU memory for any experiment, you can use gradient accumulation by configuring ACCUMULATE_GRAD_BATCHES, at the cost of longer training time. For instance, if the experiment requires at least 400 of GPU memory (e.g. V2-99, KITTI) and you have only 128 (e.g., 8 x 16G GPUs), then you can update parameters at every 4th step:

# The original batch size is 64.
./scripts/train.py +experiments=dd3d_kitti_v99 SOLVER.IMS_PER_BATCH=16 SOLVER.ACCUMULATE_GRAD_BATCHES=4

Models

All experiments here use 8 A100 40G GPUs, and use gradient accumulation when more GPU memory is needed. We subsample nuScenes validation set by a factor of 8 (2Hz ⟶ 0.25Hz) to save training time.

KITTI

experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 256 4.5 log 16.92 24.77 model
config V2-99 400 9.0 log 23.90 32.01 model

nuScenes

experiment backbone train mem. (GB) train time (hr) train log mAP (%) NDS download
config DLA-34 TBD TBD TBD) TBD TBD TBD
config V2-99 TBD TBD TBD TBD TBD TBD

License

The source code is released under the MIT license. We note that some code in this repository is adapted from the following repositories:

Reference

@inproceedings{park2021dd3d,
  author = {Dennis Park and Rares Ambrus and Vitor Guizilini and Jie Li and Adrien Gaidon},
  title = {Is Pseudo-Lidar needed for Monocular 3D Object detection?},
  booktitle = {IEEE/CVF International Conference on Computer Vision (ICCV)},
  primaryClass = {cs.CV},
  year = {2021},
}
Owner
Toyota Research Institute - Machine Learning
Toyota Research Institute - Machine Learning
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022