DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

Overview

DI-smartcross

icon

DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control.

DI-smartcross is application platform under OpenDILab

Instruction

DI-smartcross is an open-source traffic crossing signal control platform. DI-smartcross applies several Reinforcement Learning policies training & evaluation for traffic signal control system in provided road nets.

DI-smartcross uses DI-engine, a Reinforcement Learning platform to build RL experiments. DI-smartcross uses SUMO (Simulation of Urban MObility) traffic simulator package to run signal control simulation.

DI-smartcross supports:

  • Single-Agent and Multi-Agent Reinforcement Learning
  • Synthetic and Real roadnet, Arterial and Grid network shape
  • Customizable observation, action and reward types
  • Easily achieve Multi-Environment Parallel, Actor-Learner Asynchronous Parallel when training with DI-engine

Installation

DI-smartcross supports SUMO version >= 1.6.0. Here we show an easy guide of installation with SUMO 1.8.0 on Linux.

Install sumo

  1. install required libraries and dependencies
sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev swig
  1. download and unzip the installation package
tar xzf sumo-src-1.8.0.tar.gz
cd sumo-1.8.0
pwd 
  1. compile sumo
mkdir build/cmake-build
cd build/cmake-build
cmake ../..
make -j $(nproc)
  1. environment variables
echo 'export PATH=$HOME/sumo-1.8.0/bin:$PATH
export SUMO_HOME=$HOME/sumo-1.8.0' | tee -a $HOME/.bashrc
source ~/.bashrc
  1. check install
sumo

If success, the following message will be shown in the shell.

Eclipse SUMO sumo Version 1.8.0
  Build features: Linux-3.10.0-957.el7.x86_64 x86_64 GNU 5.3.1 Release Proj GUI SWIG GDAL GL2PS
  Copyright (C) 2001-2020 German Aerospace Center (DLR) and others; https://sumo.dlr.de
  License EPL-2.0: Eclipse Public License Version 2 <https://eclipse.org/legal/epl-v20.html>
  Use --help to get the list of options.

Install DI-smartcross

To install DI-smartcross, simply run pip install in the root folder of this repository. This will automatically insall DI-engine as well.

pip install -e . --user

Quick Start

Run training and evaluation

DI-smartcross supports DQN, Off-policy PPO and Rainbow DQN RL methods with multi-discrete actions for each crossing. A set of default DI-engine configs is provided for each policy. You can check the document of DI-engine to get detail instructions of these configs.

  • train RL policies
usage: sumo_train [-h] -d DING_CFG -e ENV_CFG [-s SEED] [--dynamic-flow]
                  [-cn COLLECT_ENV_NUM] [-en EVALUATE_ENV_NUM]
                  [--exp-name EXP_NAME]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  --dynamic-flow        use dynamic route flow
  -cn COLLECT_ENV_NUM, --collect-env-num COLLECT_ENV_NUM
                        collector sumo env num for training
  -en EVALUATE_ENV_NUM, --evaluate-env-num EVALUATE_ENV_NUM
                        evaluator sumo env num for training
  --exp-name EXP_NAME   experiment name to save log and ckpt

Example of running DQN in wj3 env with default config.

sumo_train -e smartcross/envs/sumo_arterial_wj3_default_config.yaml -d entry/config/sumo_wj3_dqn_default_config.py
  • evaluate existing policies
usage: sumo_eval [-h] [-d DING_CFG] -e ENV_CFG [-s SEED]
                 [-p {random,fix,dqn,rainbow,ppo}] [--dynamic-flow]
                 [-n ENV_NUM] [--gui] [-c CKPT_PATH]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  -p {random,fix,dqn,rainbow,ppo}, --policy-type {random,fix,dqn,rainbow,ppo}
                        RL policy type
  --dynamic-flow        use dynamic route flow
  -n ENV_NUM, --env-num ENV_NUM
                        sumo env num for evaluation
  --gui                 open gui for visualize
  -c CKPT_PATH, --ckpt-path CKPT_PATH
                        model ckpt path

Example of running random policy in wj3 env.

sumo_eval -p random -e smartcross/envs/sumo_arterial_wj3_default_config.yaml     

Environments

sumo env configuration

The configuration of sumo env is stored in a config .yaml file. You can take a look at the default config file to see how to modify env settings.

import yaml
from easy_dict import EasyDict
from smartcross.env import SumoEnv

with open('smartcross/envs/sumo_arterial_wj3_default_config.yaml') as f:
    cfg = yaml.safe_load(f)
cfg = EasyDict(cfg)
env = SumoEnv(config=cfg.env)

The env configuration consists of basic definition and observation\action\reward settings. The basic definition includes the cumo config file, episode length and light duration. The obs\action\reward define the detail setting of each contains.

env:
    sumocfg_path: 'arterial_wj3/rl_wj.sumocfg'
    max_episode_steps: 1500
    green_duration: 10
    yellow_duration: 3
    obs:
        ...
    action:
        ...
    reward:
        ...

Observation

We provide several types of observations of a traffic cross. If use_centrolized_obs is set True, the observation of each cross will be concatenated into one vector. The contents of observation can me modified by setting obs_type. The following observation is supported now.

  • phase: One-hot phase vector of current cross signal
  • lane_pos_vec: Lane occupancy in each grid position. The grid num can be set with lane_grid_num
  • traffic_volumn: Traffic volumn of each lane. Vehicle num / lane length * volumn ratio
  • queue_len: Vehicle waiting queue length of each lane. Waiting num / lane length * volumn ratio

Action

Sumo environment supports changing cross signal to target phase. The action space is set to multi-discrete for each cross to reduce action num.

Reward

Reward can be set with reward_type. Reward is calculated cross by cross. If use_centrolized_obs is set True, the reward of each cross will be summed up.

  • queue_len: Vehicle waiting queue num of each lane
  • wait_time: Wait time increment of vehicles in each lane
  • delay_time: Delay time of all vahicles in incomming and outgoing lanes
  • pressure: Pressure of a cross

Contributing

We appreciate all contributions to improve DI-smartcross, both algorithms and system designs.

License

DI-smartcross released under the Apache 2.0 license.

Citation

@misc{smartcross,
    title={{DI-smartcross: OpenDILab} Decision Intelligence platform for Traffic Crossing Signal Control},
    author={DI-smartcross Contributors},
    publisher = {GitHub},
    howpublished = {\url{`https://github.com/opendilab/DI-smartcross`}},
    year={2021},
}
Comments
  • style(hus): update email address

    style(hus): update email address

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by TuTuHuss 0
  • update and fix typo in docs

    update and fix typo in docs

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update envs, docs and actions

    update envs, docs and actions

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev

    Dev

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Merge branch 'main' into dev

    Merge branch 'main' into dev

    Description

    None

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update readme

    update readme

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • suit for 0.3.0

    suit for 0.3.0

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • v0.1.0 update

    v0.1.0 update

    Description

    add cityflow env suit ding 0.3

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: Version 0.0.1

    Dev: Version 0.0.1

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: update obs helper, mappo; update configs

    Dev: update obs helper, mappo; update configs

    Description

    update obs helper, mappo; add arterial7; update configs

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • add different settings for ppo

    add different settings for ppo

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by kxzxvbk 0
Releases(v0.1.0)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022