POCO: Point Convolution for Surface Reconstruction

Related tags

Deep LearningPOCO
Overview

POCO: Point Convolution for Surface Reconstruction

by: Alexandre Boulch and Renaud Marlet


Abstract

Implicit neural networks have been successfully used for surface reconstruction from point clouds. However, many of them face scalability issues as they encode the isosurface function of a whole object or scene into a single latent vector. To overcome this limitation, a few approaches infer latent vectors on a coarse regular 3D grid or on 3D patches, and interpolate them to answer occupancy queries. In doing so, they loose the direct connection with the input points sampled on the surface of objects, and they attach information uniformly in space rather than where it matters the most, i.e., near the surface. Besides, relying on fixed patch sizes may require discretization tuning. To address these issues, we propose to use point cloud convolutions and compute latent vectors at each input point. We then perform a learning-based interpolation on nearest neighbors using inferred weights. Experiments on both object and scene datasets show that our approach significantly outperforms other methods on most classical metrics, producing finer details and better reconstructing thinner volumes.


Citation

TODO


Dependencies

Our code rely on Pytorch Geometric, which should be installed. Then, run:

python setup.py build_ext --inplace

Data

ShapeNet (Occupancy Network pre-processing)

We use the ShapeNet dataset as pre-processed by Occupancy Networks. Please refer to original repository for downloading the data.

It should be placed in the folder data/ShapeNet.

SyntheticRooms (Occupancy Network pre-processing)

We use the SyntheticRooms dataset as created by Occupancy Networks. Please refer to original repository for downloading the data.

It should be placed in the folder data/synthetic_room_dataset.

ABC / RealWorld / Famous and Thingi10k

They should be placed in the folders: data/3d_shapes_abc, data/3d_shapes_abc_training, data/3d_shapes_famous, data/3d_shapes_real_world and data/3d_shapes_thingi10k.

SceneNet

Download the SceneNet dataset.

Watertight models

We use the code from https://github.com/hjwdzh/Manifold for watertight model creation. Please download and compile it.

To create the watertight models, create a destination directory data/SceneNet, copy-paste the python script datasets/scenenet_watertight.py into the directory and run it with python scenenet_watertight.py. You will need to modify the raw_data_dir and the manifold_code_dir to match your data and code locations.

Creation of the point clouds

You can use the script datasets/scenenet_sample.py. You will also need to modify the paths.

Precomputed meshes and point clouds

For easy use of the code, we provide precomputed meshes, and point clouds SceneNet20, SceneNet100, SceneNet500 and SceneNet1000.

Location

The watertight models should be in data/SceneNet.

The points are located in data/SceneNet20, data/SceneNet100, data/SceneNet1000 and data/SceneNet500.


Training

# train on ShapeNet with 3k points, noise and without normals 
python train.py --config configs/config_shapenet.yaml 

# train on ShapeNet with 10k points, no noise and normals
python train.py --config configs/config_shapenet.yaml --normals True --random_noise 0 --experiment_name Normals

# train on ABC with 3k points
python train.py --config configs/config_abc.yaml --experiment_name 3k

# train on ABC with 10k points
python train.py --config configs/config_abc.yaml --experiment_name 10k --manifold_points 10000 --training_batch_size 8

Generation

ShapeNet

python generate.py --config results/ShapeNet_None_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --gen_resolution_global 128

SyntheticRooms

python generate.py --config results/SyntheticRooms_None_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --gen_resolution_global 256 --num_mesh 1

ABC, RealWorld, Famous and Thingi10k

# Model trained with 3k points
python generate.py --config results/ABC_3k_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --dataset_name DATASET_NAME --dataset_root data/DATASET_DIR --gen_resolution_global 256

python generate.py --config results/ABC_3k_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --dataset_name DATASET_NAME --dataset_root data/DATASET_DIR --gen_resolution_global 256 --manifold_points -1 --gen_subsample_manifold 3000 --gen_subsample_manifold_iter 10 --gen_descriptor gen_sub3k_iter10

# Model trained with 10k points
python generate.py --config results/ABC_10k_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --dataset_name DATASET_NAME --dataset_root data/DATASET_DIR --gen_resolution_global 256

python generate.py --config results/ABC_10k_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --dataset_name DATASET_NAME --dataset_root data/DATASET_DIR --gen_resolution_global 256 --manifold_points -1 --noise 0.0 --gen_subsample_manifold 10000 --gen_subsample_manifold_iter 10 --gen_descriptor gen_sub3k_iter10

For faster generation, one would want to use a lower marching cubes parameter --gen_resolution_global, e.g. 128.

DATASET_NAME should be replaced by ABCTest, ABCTestNoiseFree, ABCTestExtraNoise, RealWorld, FamousTest, FamousTestNoiseFree, FamousTestExtraNoisy, FamousTestSparse, FamousTestDense, Thingi10kTest, Thingi10kTestNoiseFree, Thingi10kTestExtraNoisy, Thingi10kTestSparse, Thingi10kTestDense

DATASET_DIR should be replaced by 3d_shapes_abc, 3d_shapes_famous, 3d_shapes_real_world, 3d_shapes_thingi10k

SceneNet

python generate.py --config results/ShapeNet_Normals_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --gen_autoscale True --gen_autoscale_target 0.01 --gen_resolution_metric 0.01 --dataset_name DATASET_NAME --dataset_root data/DATASET_NAME --manifold_points -1

DATASET_NAME should be replaced by SceneNet20, SceneNet100, SceneNet500, SceneNet1000.

The --gen_autoscale_target parameter is the average distance between a point and its nearest neighbor in the training set, 0.01 for ShapeNet train set with 3000 points.


Evaluation

ShapeNet

python eval_meshes.py --gendir results/ShapeNet_None_FKAConv_InterpAttentionKHeadsNet_None/gen_ShapeNet_test_3000/ --meshdir meshes --dataset ShapeNet --split test --gtdir data/ShapeNet

SyntheticRooms

python eval_meshes.py --gendir results/SyntheticRooms_None_FKAConv_InterpAttentionKHeadsNet_None/gen_SyntheticRooms_test_10000/ --meshdir meshes --dataset SyntheticRooms --split test --gtdir data/synthetic_room_dataset 

SceneNet

python eval_scenenet.py --gendir results/ShapeNet_Normals_FKAConv_InterpAttentionKHeadsNet_None/gen_SceneNet20_test_allPts/ --meshdir meshes --gtdir data/SceneNet

ABC, Famous and Thingi10k

For evaluation on the ABCTest please run:

python eval_point2surf_datasets.py --gendir results/ABC_3k_FKAConv_InterpAttentionKHeadsNet_None/gen_ABCTest_test_3000 --meshdir meshes/04_pts/ --gtdir data/3d_shapes_abc/abc/

You can adapt the paths to evaluate on the different datasets and noise variants.


Pretrained models

We provide pre-trained models for FKAConv backbone.

ShapeNet 3k, noise, no normals

ShapeNet 3k, no noise, normals

SyntheticRooms 10k

ABC 3k

ABC 10k


Configuration

The code was used with Ubuntu, Python 3.7.10, Cuda 11.1 and Pytorch 1.8.1

Comments
  • Package Versions

    Package Versions

    Hi,

    I tried to reproduce your results, but I ran into a possible version mismatch between Pytorch and Pytorch_geometric.

    I created my environment with the following commands:

    conda create --name poco python=3.7.10
    conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=11.1 -c pytorch -c conda-forge
    conda install -c conda-forge cython
    conda install -c conda-forge tqdm 
    conda install -c conda-forge scikit-image 
    conda install -c open3d-admin open3d 
    conda install -c conda-forge scikit-learn 
    conda install -c conda-forge pyyaml 
    conda install -c conda-forge addict 
    conda install -c conda-forge pandas 
    conda install -c conda-forge plyfile 
    conda install -c conda-forge pytorch_geometric
    

    Compilation with python setup.py build_ext --inplace seems to work but python generate.py --config results/ABC_10k_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --dataset_name DATASET_NAME --dataset_root data/3d_shapes_abc/abc/ --gen_resolution_global 256 results in OSError: /home/perler/miniconda3/envs/poco/lib/python3.7/site-packages/torch_sparse/_version.so: undefined symbol: _ZN5torch3jit17parseSchemaOrNameERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE

    Installed versions are:

    (poco) [email protected]:~/repos/poco$ conda list pytorch
    # packages in environment at /home/perler/miniconda3/envs/poco:
    #
    # Name                    Version                   Build  Channel
    pytorch                   1.8.1           py3.7_cuda11.1_cudnn8.0.5_0    pytorch
    pytorch-cpu               1.1.0               py3.7_cpu_0    pytorch
    pytorch_geometric         2.0.3              pyh6c4a22f_0    conda-forge
    pytorch_sparse            0.6.4            py37hcae2be3_0    conda-forge
    

    Again, the CPU-version... but that's a different issue.

    AFAIK, they added sparse tensors only recently to Pytorch, so the installed Pytorch-geometric version might be too new. Which version of Pytorch-geometric do I need?

    Can you please create a requiremtents.txt and/or environment.yaml?

    opened by ErlerPhilipp 13
  • Cython related error when building extensions

    Cython related error when building extensions

    Hi, I completely followed the instructions, using cuda11.1 and Ubuntu, but still having this issue gcc: error: /usr/POCO/build/temp.linux-x86_64-3.7/eval/src/utils/libkdtree/pykdtree/kdtree.o: No such file or directory gcc: error: /usr/POCO/build/temp.linux-x86_64-3.7/eval/src/utils/libkdtree/pykdtree/_kdtree_core.o: No such file or directory It's asking to link .o files before it is generated. But looks like required Cython 0.27.3 is not compatible with Python 3.7.10, which is required by this project. I'm wondering does anyone have a working combination of the version of the packages? Thank you!

    opened by zhaoyuanyuan2011 5
  • Download ABC / RealWorld / Famous and Thingi10k data

    Download ABC / RealWorld / Famous and Thingi10k data

    Hello,

    Thanks for the excellent paper and for releasing the code.

    I'm wondering where I can download the ABC, RealWorld, Famous, and Thingi10k data?

    Best and have a nice day, Mulin

    opened by MulinYu 2
  • Training on my own dataset

    Training on my own dataset

    I met some problem when training on my own dataset, which is processed as ShapeNet, containing pointclouds with normals, SDF points and occ values. However, there is an error when I try to train on it.

    File "/media/yangxilab/DiskB/sanren/3Drecon/POCOnasa/networks/backbone/fkaconv_network.py", line 193, in forward x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"]))) KeyError: 'ids00'

    I'm confusing that what data["ids00"] in x0 = self.activation(self.bn0(self.cv0(x, pos, pos, data["ids00"]))) refers to? And similarily, there are many unkown data like data["ids10"]. How could I get this data? Thanks in advance!

    opened by Green89757 2
  • Failed to run

    Failed to run "python setup.py build_ext --inplace"

    Hello,

    After installing Pytorch and Pytorch Geometric, running python setup.py build_ext --inplace gives the following error:

    gcc: error: /my/computer/path/to/POCO/build/temp.linux-x86_64-3.7/eval/src/utils/libkdtree/pykdtree/_kdtree_core.o: No such file or directory
    error: command 'gcc' failed with exit status 1
    

    Any suggestions would be appreciated.

    opened by TixiaoShan 2
  • Bug during generating

    Bug during generating

    Hello again,

    When I try to generate the shapenet results with the command:

    python generate.py --config results/ShapeNet_Normals_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --gen_resolution_global 128

    I got this error:

    **loading CUDA OK INFO:root:Creating the network INFO:root:InterpNet - Simple - K=64 INFO:root:Network -- backbone -- 12783956 parameters INFO:root:Network -- projection -- 6498 parameters INFO:root:Network -- Number of parameters 12790454 INFO:root:Getting the dataset INFO:root:Normals as features INFO:root:Dataset - ShapeNet- None INFO:root:Dataset - len 8751 INFO:root:InterpNet - Simple - K=64 INFO:root:Network -- backbone -- 12783956 parameters INFO:root:Network -- projection -- 6498 parameters

    0%| | 0/8751 [00:00<?, ?it/s] 0%| | 0/8751 [00:04<?, ?it/s] Traceback (most recent call last): File "generate.py", line 594, in main(config) File "generate.py", line 539, in main step=step File "generate.py", line 170, in export_mesh_and_refine_vertices_region_growing_v2 mesh = o3d.geometry.TriangleMesh(o3d_verts, o3d_faces) TypeError: init(): incompatible constructor arguments. The following argument types are supported: 1. open3d.open3d.geometry.TriangleMesh() 2. open3d.open3d.geometry.TriangleMesh(arg0: open3d.open3d.geometry.TriangleMesh)

    Invoked with: std::vectorEigen::Vector3d with 133788 elements. Use numpy.asarray() to access data., std::vectorEigen::Vector3i with 267574 elements. Use numpy.asarray() to access data.

    Did you forget to #include <pybind11/stl.h>? Or <pybind11/complex.h>, <pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic conversions are optional and require extra headers to be included when compiling your pybind11 module. **

    Thanks in advance and have a nice day. Best. Mulin

    opened by MulinYu 1
  • It takes one hour to generate the mesh from 16k point clouds in ScanNet dataset

    It takes one hour to generate the mesh from 16k point clouds in ScanNet dataset

    Dear author,

    Thanks for sharing your interesting work!

    I use the provided script to generate the mesh from the ScanNet dataset, and I found that it takes a long time (e.g, nearly 1 hour from 16K point clouds input). I am wondering if it is a normal situation. BTW, I just use the following script to generate mesh; python generate.py --config results/ShapeNet_Normals_FKAConv_InterpAttentionKHeadsNet_None/config.yaml --gen_autoscale True --gen_autoscale_target 0.01 --gen_resolution_metric 0.01 --dataset_name SceneNet20 --dataset_root data/SceneNet20 --manifold_points -1

    Looking forward to your reply. Many thanks in advance.

    Best, Runsong

    opened by Runsong123 0
  • RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when running the code

    RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when running the code

    Hi! Thanks for your interesting and enlightening work on point cloud reconstruction tasks, and we are trying to reproduce your work. However, we encounter an error when running your code: Capture I am wondering how to fix this bug? Thanks for your timely response.

    opened by CUHKWilliam 3
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022