Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Overview

Face-Recognition-based-Attendance-System

A real time implementation of Attendance System in python.

Pre-requisites

To understand the implentation of Facial recognition based Attendance System you must have,
– Basic understanding of Image Classification
– Knowledge of Python and Deep Learning

Dependencies

1- OpenCV
2- dlib
3- face_recognition
4- os
5- imutils
6- numpy
7- pickle
8- datetime
9- Pandas

Note: To install dlib and face_recognition, you need to create a virtual environment in your IDE first.

Overview

Face is the crucial part of the human body that uniquely identifies a person. Using the face characteristics the face recognition projects can be implemented. The technique which I have used to implent this project is Deep Metric Learning.

What is Deep Metric Learning ?

If you have any prior experience with deep learning you know that we typically train a network to:
Accept a single input image
And output a classification/label for that image
However, deep metric learning is different. Instead, of trying to output a single label, we are outputting a real-valued feature vector. This technique can be divided into three steps,

Face Detection

The first task that we perform is detecting faces in the image(photograph) or video stream. Now we know that the exact coordinates or location of the face, so we extract this face for further processing.

Feature Extraction

Now see we have cropped out the face from the image, so we extract specific features from it. Here we are going to see how to use face embeddings to extract these features of the face. Here a neural network takes an image of the face of the person as input and outputs a vector that represents the most important features of a face. For the dlib facial recognition network which I have used here, the output feature vector is 128-d (i.e., a list of 128 real-valued numbers) that is used to quantify the face. This output feature vector is also called face embeddings.

Comparing Faces

We have face embeddings for each face in our data saved in a file, the next step is to recognize a new image that is not in our data. Hence the first step is to compute the face embedding for the image using the same network we used earlier and then compare this embedding with the rest of the embeddings that we have. We recognize the face if the generated embedding is closer or similar to any other embedding.

What's include in this repository ?

Three files only. These are
1- Feature_extractor.py for extracting and saving the features from images (128-d vector for each face) of persons provided
2- attendace.py for real time implementation of Face-Recognition-based-Attendance-System.
3- README.md which you are reading.

How to implement ?

Create a folder named 'images' at the same location where you have kept the python files mentioned above. In this folder you will create sub folders, each having the the images of the of a persons whom you want the program to recognize. Each folder should have 3-4 images. Change the names of subfolder to the names of the people to be identified. Now first run Feature_extractor.py. This will takes some time and provide you a file named face_enc containing the features extracted from the the images. This file will be used by attendace.py. Now run attendace.py to real time implementation of Face-Recognition-based-Attendance-System. If a person recognized by the program then his/her name and time of recognization will be stored in record.csv . You don't need this file, program will create this file itself and will keep maintaining the attendance data in it.
To further understand the working of program, just go through the code files and read the comments in it.
Owner
Muhammad Zain Ul Haque
Muhammad Zain Ul Haque
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
This is a Keras implementation of a CNN for estimating age, gender and mask from a camera.

face-detector-age-gender This is a Keras implementation of a CNN for estimating age, gender and mask from a camera. Before run face detector app, expr

Devdreamsolution 2 Dec 04, 2021
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022