Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Overview

Face-Recognition-based-Attendance-System

A real time implementation of Attendance System in python.

Pre-requisites

To understand the implentation of Facial recognition based Attendance System you must have,
– Basic understanding of Image Classification
– Knowledge of Python and Deep Learning

Dependencies

1- OpenCV
2- dlib
3- face_recognition
4- os
5- imutils
6- numpy
7- pickle
8- datetime
9- Pandas

Note: To install dlib and face_recognition, you need to create a virtual environment in your IDE first.

Overview

Face is the crucial part of the human body that uniquely identifies a person. Using the face characteristics the face recognition projects can be implemented. The technique which I have used to implent this project is Deep Metric Learning.

What is Deep Metric Learning ?

If you have any prior experience with deep learning you know that we typically train a network to:
Accept a single input image
And output a classification/label for that image
However, deep metric learning is different. Instead, of trying to output a single label, we are outputting a real-valued feature vector. This technique can be divided into three steps,

Face Detection

The first task that we perform is detecting faces in the image(photograph) or video stream. Now we know that the exact coordinates or location of the face, so we extract this face for further processing.

Feature Extraction

Now see we have cropped out the face from the image, so we extract specific features from it. Here we are going to see how to use face embeddings to extract these features of the face. Here a neural network takes an image of the face of the person as input and outputs a vector that represents the most important features of a face. For the dlib facial recognition network which I have used here, the output feature vector is 128-d (i.e., a list of 128 real-valued numbers) that is used to quantify the face. This output feature vector is also called face embeddings.

Comparing Faces

We have face embeddings for each face in our data saved in a file, the next step is to recognize a new image that is not in our data. Hence the first step is to compute the face embedding for the image using the same network we used earlier and then compare this embedding with the rest of the embeddings that we have. We recognize the face if the generated embedding is closer or similar to any other embedding.

What's include in this repository ?

Three files only. These are
1- Feature_extractor.py for extracting and saving the features from images (128-d vector for each face) of persons provided
2- attendace.py for real time implementation of Face-Recognition-based-Attendance-System.
3- README.md which you are reading.

How to implement ?

Create a folder named 'images' at the same location where you have kept the python files mentioned above. In this folder you will create sub folders, each having the the images of the of a persons whom you want the program to recognize. Each folder should have 3-4 images. Change the names of subfolder to the names of the people to be identified. Now first run Feature_extractor.py. This will takes some time and provide you a file named face_enc containing the features extracted from the the images. This file will be used by attendace.py. Now run attendace.py to real time implementation of Face-Recognition-based-Attendance-System. If a person recognized by the program then his/her name and time of recognization will be stored in record.csv . You don't need this file, program will create this file itself and will keep maintaining the attendance data in it.
To further understand the working of program, just go through the code files and read the comments in it.
Owner
Muhammad Zain Ul Haque
Muhammad Zain Ul Haque
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq πŸ“– Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz PΓ©rez 6 Dec 01, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding πŸ“‹ This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

η‘žι›ͺ轻飏 8 Sep 10, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022