Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

Overview

How Tight Can PAC-Bayes be in the Small Data Regime?

This is the code to reproduce all experiments for the following paper:

@inproceedings{Foong:2021:How_Tight_Can_PAC-Bayes_Be,
    title = {How Tight Can {PAC}-{Bayes} Be in the Small Data Regime?},
    year = {2021},
    author = {Andrew Y. K. Foong and Wessel P. Bruinsma and David R. Burt and Richard E. Turner},
    booktitle = {Advances in Neural Information Processing Systems},
    volume = {35},
    eprint = {https://arxiv.org/abs/2106.03542},
}

Every experiment creates a folder in _experiments. The names of the files in those folders should be self-explanatory.

Installation

First, create and activate a virtual environment for Python 3.8.

virtualenv venv -p python3.8 
source venv/bin/activate

Then install an appropriate GPU-accelerated version of PyTorch.

Finally, install the requirements for the project.

pip install -e . 

You should now be able to run the below commands.

Generating Datasets

In order to generate the synthetic 1D datasets used, run these commands from inside classification_1d:

python gen_data.py --class_scheme balanced --num_context 30 --name 30-context --num_train_batches 5000 --num_test_batches 64
python gen_data.py --class_scheme balanced --num_context 60 --name 60-context --num_train_batches 5000 --num_test_batches 64

The generated datasets will be in pacbayes/_data_caches

Theory Experiments

See Figure 2 in Section 3 and Appendix G.

python theory_experiments.py --setting det1-1
python theory_experiments.py --setting det1-2
python theory_experiments.py --setting det2-1
python theory_experiments.py --setting det2-1

python theory_experiments.py --setting stoch1
python theory_experiments.py --setting stoch2
python theory_experiments.py --setting stoch3

python theory_experiments.py --setting random --random-seed 1 --random-better-bound maurer
python theory_experiments.py --setting random --random-seed 6 --random-better-bound catoni

GNP Classification Experiments

See Figure 3 and 4 in Section 4 and Appendices I and J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh

MLP Classification Experiments

See Appendix J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_MLP.sh

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_MLP.sh
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022