Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

Overview

How Tight Can PAC-Bayes be in the Small Data Regime?

This is the code to reproduce all experiments for the following paper:

@inproceedings{Foong:2021:How_Tight_Can_PAC-Bayes_Be,
    title = {How Tight Can {PAC}-{Bayes} Be in the Small Data Regime?},
    year = {2021},
    author = {Andrew Y. K. Foong and Wessel P. Bruinsma and David R. Burt and Richard E. Turner},
    booktitle = {Advances in Neural Information Processing Systems},
    volume = {35},
    eprint = {https://arxiv.org/abs/2106.03542},
}

Every experiment creates a folder in _experiments. The names of the files in those folders should be self-explanatory.

Installation

First, create and activate a virtual environment for Python 3.8.

virtualenv venv -p python3.8 
source venv/bin/activate

Then install an appropriate GPU-accelerated version of PyTorch.

Finally, install the requirements for the project.

pip install -e . 

You should now be able to run the below commands.

Generating Datasets

In order to generate the synthetic 1D datasets used, run these commands from inside classification_1d:

python gen_data.py --class_scheme balanced --num_context 30 --name 30-context --num_train_batches 5000 --num_test_batches 64
python gen_data.py --class_scheme balanced --num_context 60 --name 60-context --num_train_batches 5000 --num_test_batches 64

The generated datasets will be in pacbayes/_data_caches

Theory Experiments

See Figure 2 in Section 3 and Appendix G.

python theory_experiments.py --setting det1-1
python theory_experiments.py --setting det1-2
python theory_experiments.py --setting det2-1
python theory_experiments.py --setting det2-1

python theory_experiments.py --setting stoch1
python theory_experiments.py --setting stoch2
python theory_experiments.py --setting stoch3

python theory_experiments.py --setting random --random-seed 1 --random-better-bound maurer
python theory_experiments.py --setting random --random-seed 6 --random-better-bound catoni

GNP Classification Experiments

See Figure 3 and 4 in Section 4 and Appendices I and J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=30 ./run_GNP_prop_68.sh

MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer MODEL_DDP=maurer-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=convex-nonseparable MODEL_DDP=convex-nonseparable-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-optimistic MODEL_DDP=maurer-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv MODEL_DDP=maurer-inv-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_024.sh
MODEL_NONDDP=maurer-inv-optimistic MODEL_DDP=maurer-inv-optimistic-ddp NUM_CONTEXT=60 ./run_GNP_prop_68.sh

MLP Classification Experiments

See Appendix J. The numbers from the graphs can be found in eval_metrics_no_post_opt.txt (without post optimisation) eval_metrics_post_opt.txt (with post optimisation).

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=30 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=30 ./run_MLP.sh

MODEL_NONDDP=catoni MODEL_DDP=catoni-ddp NUM_CONTEXT=60 ./run_MLP.sh
MODEL_NONDDP=kl-val MODEL_DDP=kl-val NUM_CONTEXT=60 ./run_MLP.sh
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022