MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Overview

Documentation: https://mmgeneration.readthedocs.io/

Introduction

English | 简体中文

MMGeneration is a powerful toolkit for generative models, especially for GANs now. It is based on PyTorch and MMCV. The master branch works with PyTorch 1.5+.

Major Features

  • High-quality Training Performance: We currently support training on Unconditional GANs, Internal GANs, and Image Translation Models. Support for conditional models will come soon.
  • Powerful Application Toolkit: A plentiful toolkit containing multiple applications in GANs is provided to users. GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs! (Tutorial for applications)
  • Efficient Distributed Training for Generative Models: For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP. (Tutorial for DDP)
  • New Modular Design for Flexible Combination: A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combination among different modules. (Tutorial for new modular design)
Training Visualization
GAN Interpolation
GAN Projector
GAN Manipulation

Highlight

  • Positional Encoding as Spatial Inductive Bias in GANs (CVPR2021) has been released in MMGeneration. [Config], [Project Page]

Changelog

v0.1.0 was released on 20/04/2021. Please refer to changelog.md for details and release history.

ModelZoo

These methods have been carefully studied and supported in our frameworks:

Unconditional GANs (click to collapse)
Image2Image Translation (click to collapse)
Internal Learing (click to collapse)

License

This project is released under the Apache 2.0 license. Some operations in MMGeneration are with other licenses instead of Apache2.0. Please refer to LICENSES.md for the careful check, if you are using our code for commercial matters.

Installation

Please refer to get_started.md for installation.

Getting Started

Please see get_started.md for the basic usage of MMGeneration. docs/quick_run.md can offer full guidance for quick run. For other details and tutorials, please go to our documentation.

Contributing

We appreciate all contributions to improve MMGeneration. Please refer to CONTRIBUTING.md in MMCV for more details about the contributing guideline.

Citation

If you find this project useful in your research, please consider cite:

@misc{2021mmgeneration,
    title={{MMGeneration}: OpenMMLab Generative Model Toolbox and Benchmark},
    author={MMGeneration Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmgeneration}},
    year={2021}
}

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: OpenMMLab's next-generation toolbox for generative models.
Comments
  • Fix s3 readme of 1.x branch

    Fix s3 readme of 1.x branch

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Fix s3 readme dev-1.x

    Fix s3 readme dev-1.x

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Fix s3 readme with refined metrics

    Fix s3 readme with refined metrics

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
  • Latent-Diffusion Models

    Latent-Diffusion Models

    Model/Dataset/Scheduler description

    Recent trends show that diffusion models, especially latent diffusion models, have been very successful for image/video generation tasks. While the current codebase supports IDDPM, I believe supporting LDM for tasks like unconditional image generation or even text-to-image generation would be very helpful for the openmmlab family.

    Open source status

    • [ ] The model implementation is available
    • [ ] The model weights are available.

    Provide useful links for the implementation

    https://github.com/CompVis/latent-diffusion

    opened by Adamdad 5
  • add colab page

    add colab page

    Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers.

    Motivation

    Please describe the motivation of this PR and the goal you want to achieve through this PR.

    Modification

    Please briefly describe what modification is made in this PR.

    Who can help? @ them here!

    BC-breaking (Optional)

    Does the modification introduce changes that break the backward-compatibility of the downstream repositories? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

    Use cases (Optional)

    If this PR introduces a new feature, it is better to list some use cases here, and update the documentation.

    Checklist

    Before PR:

    • [ ] I have read and followed the workflow indicated in the CONTRIBUTING.md to create this PR.
    • [ ] Pre-commit or linting tools indicated in CONTRIBUTING.md are used to fix the potential lint issues.
    • [ ] Bug fixes are covered by unit tests, the case that causes the bug should be added in the unit tests.
    • [ ] New functionalities are covered by complete unit tests. If not, please add more unit test to ensure the correctness.
    • [ ] The documentation has been modified accordingly, including docstring or example tutorials.

    After PR:

    • [ ] If the modification has potential influence on downstream or other related projects, this PR should be tested with some of those projects.
    • [ ] CLA has been signed and all committers have signed the CLA in this PR.
    opened by plyfager 0
Releases(v0.7.2)
  • v0.7.2(Sep 14, 2022)

    Improvements

    • [Docs] Fix typos in docs. by @RangeKing in https://github.com/open-mmlab/mmgeneration/pull/425
    • [Docs] Add doc for StyleGAN-Ada by @plyfager in https://github.com/open-mmlab/mmgeneration/pull/391
    • [Fix] Update MMCV_MAX to 1.7 by @LeoXing1996 in https://github.com/open-mmlab/mmgeneration/pull/436
    • [CI] update github workflow, circleci and github templates by @LeoXing1996 in https://github.com/open-mmlab/mmgeneration/pull/431

    New Contributors

    • @RangeKing made their first contribution in https://github.com/open-mmlab/mmgeneration/pull/425
    Source code(tar.gz)
    Source code(zip)
  • v1.0.0rc0(Sep 1, 2022)

    MMGeneration 1.0.0rc0 is the first version of MMGeneration 1.x, a part of the OpenMMLab 2.0 projects.

    Built upon the new training engine, MMGeneration 1.x unifies the interfaces of dataset, models, evaluation, and visualization.

    And there are some BC-breaking changes. Please check the migration tutorial for more details.

    Source code(tar.gz)
    Source code(zip)
  • v0.7.1(Apr 30, 2022)

    Fix bugs and Improvements

    • Support train_dataloader, val_dataloader and test_dataloader settings (#281)
    • Fix ada typo (#283)
    • Add chinese application tutorial (#284)
    • Add chinese document of ddp training (#286)

    Contributors

    @plyfager @LeoXing1996

    Source code(tar.gz)
    Source code(zip)
  • v0.7.0(Apr 2, 2022)

    Highlights

    • Support training of StyleGANv3 (#275, #277)
    • Support adaptive discriminator augmentation (#276)

    New Features

    • Support passing training arguments in static unconditional gan (#275)
    • Support dynamic EMA, now you can define momentum updating policy (#261)
    • Add multi machine distribute train (#267)

    Fix bugs and Improvements

    • Add brief installation steps in README (#270)
    • Support random seed for distributed sampler (#271)
    • Use hyphen for command line args in apps (#273)

    Contributors

    @plyfager @LeoXing1996

    Source code(tar.gz)
    Source code(zip)
  • v0.6.0(Mar 7, 2022)

    Highlights

    • Support StyleGANv3 (#247, #253, #258)
    • Support StyleCLIP (#236)

    New Features

    • Support training on CPU (#238)
    • Speed up training (#231)

    Fix bugs and Improvements

    • Fix bug in non-distributed training/testing (#239)
    • Fix typos and invalid links (#221, #226, #228, #244, #249)
    • Add part of Chinese documentation (#250, #257)

    Contributors

    @plyfager @LeoXing1996 @gvalvano @JimHeo @plutoyuxie

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Jan 12, 2022)

    Highlights

    • Support BigGAN style's Spectral Norm and update BigGAN with best FID and IS (#159)
    • Support import projected latent and export video in interpolation (#167)
    • Support Improved-DDPM model (#205)

    New Features

    • Support evaluation in distributed mode (#151)
    • Support presistent_work in validation dataloader (#179)
    • Support dockerfile (#200)
    • Support mim (#176)

    Fix bugs and Improvements

    • Fix bug in SinGAN dataset (#192)
    • Fix SAGAN, SNGAN and BigGAN's default sn_style (#199, #213, #215, #217)

    Contributors

    @plyfager @LeoXing1996 @nbei @TommyZihao @JiangongWang

    Source code(tar.gz)
    Source code(zip)
  • v0.4.0(Nov 3, 2021)

    Highlights

    • Add more experiments for conditional GANs: SNGAN, SAGAN, and BigGAN
    • Refact Translation Model (#88, #126, #127, #145)

    New Features

    • Use PyTorch Sphinx theme #123
    • Support torchserve for unconditional models #131

    Fix bugs and Improvements

    • Add CI for python3.9 #110
    • Add support for PyTorch1.9 #115
    • Add pre-commit hook for spell checking #135

    Contributors

    @plyfager , @LeoXing1996 , @ckkelvinchan , @nbei

    Source code(tar.gz)
    Source code(zip)
  • v0.3.0(Aug 2, 2021)

    Highlights

    • Support conditional GANs: Projection GAN, SNGAN, SAGAN, and BigGAN

    New Features

    • Add support for persistent_workers in PyTorch >= 1.7.0 #71
    • Support warm-up for EMA #55

    Fix bugs and Improvements

    • Fix failing to build docs #64
    • Revise the logic of num_classes in basic conditional gan #69
    • Support dynamic eval internal in eval hook #73
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(May 30, 2021)

    Highlights

    • Support new methods: LSGAN, GGAN.
    • Support mixed-precision training (FP16): official PyTorch Implementation and APEX (#11, #20)

    New Features

    • Add the experiment of MNIST in DCGAN (#24)
    • Add support for uploading checkpoints to Ceph system (cloud server) (#27)
    • Add the functionality of saving the best checkpoint in GenerativeEvalHook (#21)

    Fix bugs and Improvements

    • Fix loss of sample-cfg argument (#13)
    • Add pbar to offline eval and fix bug in grayscale image evaluation/saving (#23)
    • Fix error when data_root option in val_cfg or test_cfg are set as None (#28)
    • Change latex in quick_run.md to svg url and fix number of checkpoints in modelzoo_statistics.md (#34)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Apr 23, 2021)

    Highlights

    • MMGeneration v0.1.0 is released.

    Main Features

    • High-quality Training Performance: We currently support training on Unconditional GANs(DCGAN, WGAN-GP,PGGAN, StyleGANV1, StyleGANV2, Positional Encoding in GANs), Internal GANs(SinGAN), and Image Translation Models(Pix2Pix, CycleGAN). Support for conditional models will come soon.
    • Powerful Application Toolkit: A plentiful toolkit containing multiple applications in GANs is provided to users. GAN interpolation, GAN projection, and GAN manipulations are integrated into our framework. It's time to play with your GANs!
    • Efficient Distributed Training for Generative Models: For the highly dynamic training in generative models, we adopt a new way to train dynamic models with MMDDP.
    • New Modular Design for Flexible Combination: A new design for complex loss modules is proposed for customizing the links between modules, which can achieve flexible combinations among different modules.
    Source code(tar.gz)
    Source code(zip)
Owner
OpenMMLab
OpenMMLab
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022