An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Overview

title

Pi Zero Bikecomputer

An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+

https://github.com/hishizuka/pizero_bikecomputer

News

  • 2021/4/18 Please reinstall pyqtgraph when using python3-pyqt5 in Raspberry Pi OS (skip check if using).
  • 2021/4/3 Please reinstall openant and pyqtgraph because both libraries are re-forked.
$ sudo pip3 uninstall pyqtgraph
$ sudo pip3 install git+https://github.com/hishizuka/pyqtgraph.git
$ sudo pip3 uninstall openant
$ sudo pip3 install git+https://github.com/hishizuka/openant.git

Table of Contents

Abstract

Pi Zero Bikecomputer is a GPS and ANT+ bike computer based on Raspberry Pi Zero(W, WH). This is the first DIY project in the world integrated with necesarry hardwares and softwares for modern bike computer. It measures and records position(GPS), ANT+ sensor(speed/cadence/power) and I2C sensor(pressure/temperature/accelerometer, etc). It also displays these values, even maps and courses in real-time. In addition, it write out log into .fit format file.

In this project, Pi Zero Bikecomputer got basic functions needed for bike computers. Next target is to add new functions which existing products do not have!

You will enjoy both cycling and the maker movement with Pi Zero Bikecomputer!

Here is detail articles in Japanese.

Daily update at twitter (@pi0bikecomputer), and my cycling activity at STRAVA.

system-01-202106

system-02

Features

  • Easy to make

    • Use modules available at famous Maker stores.
    • Assemble in Raspberry Pi ecosystems.
    • Install with basic commands such as apt-get install, pip and git command.
  • Customization

    • Need only modules you want to use. Pi Zero Bikecomputer detects your modules.
  • Easy to develop

    • Pi Zero Bikecomputer uses same libraries as for standard Linux.
    • So, you can run in cross platform environments such as Raspberry Pi OS, some Linux, macOS and Windows.
  • Good balance between battery life and performance

Specs

Some functions depend on your parts.

General

Specs Detail Note
Logging Yes See as below
Sensors Yes See as below
Positioning Yes A GPS module is required. See as below.
GUI Yes See as below
Wifi Yes Built-in wifi
Battery life(Reference) 18h with 3100mAh mobile battery(Garmin Charge Power Pack) and MIP Reflective color LCD.

Logging

Specs Detail Note
Stopwatch Yes Timer, Lap, Lap timer
Lap Yes [Total, Lap ave, Pre lap ave] x [HR, Speed, Cadence, Power]
Cumulative value Yes [Total, Lap, Pre lap] x [Distance, Works, Ascent, Descent]
Elapsed time Yes Elapsed time, average speed(=distance/elapsed time), gained time from average speed 15km/h(for brevet)
Auto stop Yes Automatic stop at speeds below 4km/h(configurable), or in the state of the acceleration sensor when calculating the speed by GPS alone
Recording insterval 1s Smart recording is not supported.
Resume Yes
Output .fit log file Yes
Upload to STRAVA Yes
Live sending Yes But I can't find a good dashboard service like as Garmin LiveTrack

Sensors

USB dongle is required if using ANT+ sensors.

Specs Detail Note
ANT+ heartrate sensor Yes
ANT+ speed sensor Yes
ANT+ cadence sensor Yes
ANT+ speed&cadence sensor Yes
ANT+ powermeter Yes Calibration is not supported.
ANT+ LIGHT Yes Bontrager Flare RT only.
ANT+ Control Yes Garmin Edge Remote only.
Bluetooth sensors No
Barometric altimeter Yes An I2c sensor(pressure, temperature) is required.
Accelerometer Yes An I2c sensor is required.
Magnetometer Yes An I2c sensor is required.
Light sensor Yes An I2c sensor is required. For auto backlight and lighting.

Positioning

Specs Detail Note
Map Yes Support map tile format like OSM. So, offline map is available with local caches.
Course on the map Yes A course file(.tcx) is required.
Course profile Yes A course file(.tcx) is required.
Cuesheet Yes Use course points included in course files.
Search Route Yes Google Directions API
  • Map with Toner Map
    • Very useful with 2 colors displays (black and white).
  • Map with custimized Mapbox
    • Use 8 colors suitable for MIP Reflective color LCD.
  • Course profile

GUI

Specs Detail Note
Basic page(values only) Yes
Graph Yes Altitude and performance(HR, PWR)
Customize data pages Yes With layout.yaml
ANT+ pairing Yes
Adjust wheel size Yes Set once, store values
Adjust altitude Yes Auto adjustments can be made only once, if on the course.
Language localization Yes Font and translation file of items are required.
No GUI option Yes headless mode
  • Performance graph
  • Language localization(Japanese)

Experimental functions

ANT+ multiscan

it displays three of the people around you in the order in which you caught sensors using ANT+ continuous scanning mode.

Comparison with other bike computers

  • 200km ride with Garmin Edge 830 and Pizero Bikecomputer (strava activity)

  • title-03.png

Items Edge830 Pi Zero Bikecomputer
Distance 193.8 km 194.3 km
Work 3,896 kJ 3,929 kJ
Moving time 9:12 9:04
Total Ascent 2,496 m 2,569 m

Hardware Installation

See hardware_installation.md.

Software Installation

See software_installation.md.

Q&A

License

This repository is available under the GNU General Public License v3.0

Author

hishizuka (@pi0bikecomputer at twitter, pizero bikecomputer at STRAVA)

Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Jack Turner 12 Nov 05, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022