MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Related tags

Deep LearningMoCoPnet
Overview

Deformable 3D Convolution for Video Super-Resolution

Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet). [PDF]

Overview


Requirements

  • Python 3
  • pytorch >= 1.6
  • numpy, PIL

Datasets

Training & test datasets

Download SAITD dataset.

SAITD dataset is a large-scale high-quality semi-synthetic dataset of infrared small target. We employ the 1st-50th sequences with target annotations as the test datasets and the remaining 300 sequences as the training datasets.

Download Hui and Anti-UAV.

Hui and Anti-UAV datasets are used as the test datasets to test the robustness of our MoCoPnet to real scenes. In Anti-UAV dataset, only the sequences with infrared small target (i.e., The target size is less than 0.12% of the image size) are selected as the test set (21 sequences in total). Note that, we only use the first 100 images of each sequence for test to balance computational/time cost and generalization performance.

For simplicity, you can also Download the test datasets in https://pan.baidu.com/s/1oobhklwIChvNJIBpTcdQRQ?pwd=1113 and put the folder in code/data.

Data format:

  1. The training dataset is in code/data/train/SAITD.
train
  └── SAITD
       └── 1
              ├── 0.png
              ├── 1.png
              ├── ...
       └── 2
              ├── 00001
              ├── 00002
              ├── ...		
       ...
  1. The test datasets are in code/data/test as below:
 test
  └── dataset_1
         └── scene_1
              ├── 0.png  
              ├── 1.png  
              ├── ...
              └── 100.png    
               
         ├── ...		  
         └── scene_M
  ├── ...    
  └── dataset_N      

Results

Quantitative Results of SR performance

Table 1. PSNR/SSIM achieved by different methods.

Table 2. SNR and CR results of different methods achieved on super-resolved LR images and super-resolved HR images.

Qualitative Results of SR performance

Figure 1. Visual results of different SR methods on LR images for 4x SR.

Figure 2. Visual results of different SR methods on LR images for 4x SR.

Quantitative Results of detection

Table 3. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved LR images.

Table 4. Quantitative results of Tophat, ILCM, IPI achieved on super-resolved HR images.

Figure 3. ROC results of Tophat, ILCM and IPI achieved on super-resolved LR images.

Figure 4. ROC results of Tophat, ILCM and IPI achieved on super-resolved HR images.

Qualitative Results of detection

Figure 5. Qualitative results of super-resolved LR image and detection results.

Figure 6. Qualitative results of super-resolved HR image and detection results.

Citiation

@article{MoCoPnet,
  author = {Ying, Xinyi and Wang, Yingqian and Wang, Longguang and Sheng, Weidong and Liu, Li and Lin, Zaipin and Zhou, Shilin},
  title = {MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution},
  journal={arXiv preprint arXiv:2201.01014},
  year = {2020},
}

Contact

Please contact us at [email protected] for any question.

Owner
Xinyi Ying
Her current research interests focus on image & video super-resolution and small target detection.
Xinyi Ying
A 10000+ hours dataset for Chinese speech recognition

WenetSpeech Official website | Paper A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition Download Please visit the official website, rea

310 Jan 03, 2023
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022