Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Overview

Vision recognition using LOBE AI and Azure Functions

License: MIT Twitter: elbruno GitHub: elbruno

During the last couple of months, I’ve having fun with my new friends at home: 🐿️ 🐿️ 🐿️ . These little ones, are extremelly funny, and they literally don’t care about the cold 🥶 ❄️ ☃️ .

So, I decided to help them and build an Automatic Feeder using Azure IoT, a Wio Terminal and maybe some more devices. You can check the Azure IoT project here Azure IoT - Squirrel Feeder.

Once the feeder was ready, I decided to add a new feature to the scenario, detecting when a squirrel 🐿️ is nearby the feeder. In this repository I'll share:

  • How to create an image recognition model using LOBE.
  • How to export the model to a TensorFlow image format.
  • How to run the model in an Azure Function.

LOBE AI

LOBE is a free, easy-to-use Microsoft desktop application that allows you to build, manage, and use custom machine learning models. With Lobe, you can create an image classification model to categorize images into labels that represent their content.

Here's a summary of how to prepare a model in Lobe:

  • Import and label images.
  • Train your model.
  • Evaluate training results.
  • Play with your model to experiment with different scenarios.
  • Export and use your model in an app.

The Overview of image classification model by Lobe section contains step-by-step instructions that let you make calls to the service and get results in a short period of time.

You can use the images in the "LOBE/Train/" directory in this repository to train your model.

Here is the model performing live recognition in action:

Exporting the model to TensorFlow

Once the project was trained, you can export it to several formats. We will use a TensorFlow format for the Azure Function.

The exported model has several files. The following list shows the files that we use in our Azure Function:

  • labels.txt: The labels that the model recognizes
  • saved_model.pb: The model definition
  • signature.json: The model signature
  • example/tf_example.py.py: sample python code that uses the exported model.

You can check the exported model in the "Lobe/ExportedModel" directory in this repository.

Azure Function

Time to code! Let's create a new Azure Function Using Visual Studio Code and the Azure Functions for Visual Studio Code extension.

Changes to __ init __.py

The following code is the final code for the __ init __.py file in the Azure Function.

A couple of notes:

  • The function will receive a POST request with the file bytes in the body.
  • In order to use the tf_model_helper file, we must import the tf_model_helper.py function from the tf_model_helper.py file using ".tf_model_helper"
  • ASSETS_PATH and TF_MODEL are the variables that we will use to access the exported model. We will use os.path to resolve the current path to the exported model.
  • The result of the function will be a JSON string with the prediction. Jsonify will convert the TF_Model() image prediction to a JSON string.
import logging
import azure.functions as func

# Imports for image procesing
import io
import os
from PIL import Image
from flask import Flask, jsonify

# Imports for prediction
from .tf_model_helper import TFModel

def main(req: func.HttpRequest) -> func.HttpResponse:
    logging.info('Python HTTP trigger function processed a request.')

    results = "{}"
    try:
        # get and load image from POST
        image_bytes = req.get_body()    
        image = Image.open(io.BytesIO(image_bytes))

        # Load and intialize the model and the app context
        app = Flask(__name__)  

        # load LOBE Model using the current directory
        scriptpath = os.path.abspath(__file__)
        scriptdir  = os.path.dirname(scriptpath)
        ASSETS_PATH = os.path.join(scriptdir, "model")
        TF_MODEL = TFModel(ASSETS_PATH)

        with app.app_context():        
            # prefict image and process results in json string format
            results = TF_MODEL.predict(image)            
            jsonresult = jsonify(results)
            jsonStr = jsonresult.get_data(as_text=True)
            results = jsonStr

    except Exception as e:
        logging.info(f'exception: {e}')
        pass 

    # return results
    logging.info('Image processed. Results: ' + results)
    return func.HttpResponse(results, status_code=200)

Changes to requirements.txt

The requirements.txt file will define the necessary libraries for the Azure Function. We will use the following libraries:

# DO NOT include azure-functions-worker in this file
# The Python Worker is managed by Azure Functions platform
# Manually managing azure-functions-worker may cause unexpected issues

azure-functions
requests
Pillow
numpy
flask
tensorflow
opencv-python

Sample Code

You can view a sample function completed code in the "AzureFunction/LobeSquirrelDetectorFunction/" directory in this repository.

Testing the sample

Once our code is complete we can test the sample in local mode or in Azure Functions, after we deploy the Function. In both scenarios we can use any tool or language that can perform HTTP POST requests to the Azure Function to test our function.

Test using Curl

Curl is a command line tool that allows you to send HTTP requests to a server. It is a very simple tool that can be used to send HTTP requests to a server. We can test the local function using curl with the following command:

❯ curl http://localhost:7071/api/LobeSquirrelDetectorFunction -Method 'Post' -InFile 01.jpg

Test using Postman

Postman is a great tool to test our function. You can use it to test the function in local mode and also to test the function once it has been deployed to Azure Functions. You can download Postman here.

In order to test our function we need to know the function url. In Visual Studio Code, we can get the url by clicking on the Functions section in the Azure Extension. Then we can right click on the function and select "Copy Function URL".

Now we can go to Postman and create a new POST request using our function url. We can also add the image we want to test. Here is a live demo, with the function running locally, in Debug mode in Visual Studio Code:

We are now ready to test our function in Azure Functions. To do so we need to deploy the function to Azure Functions. And use the new Azure Function url with the same test steps.

Additional Resources

You can check a session recording about this topic in English and Spanish.

These links will help to understand specific implementations of the sample code:

In my personal blog "ElBruno.com", I wrote about several scenarios on how to work and code with LOBE.

Author

👤 Bruno Capuano

🤝 Contributing

Contributions, issues and feature requests are welcome!

Feel free to check issues page.

Show your support

Give a ⭐️ if this project helped you!

📝 License

Copyright © 2021 Bruno Capuano.

This project is MIT licensed.


Owner
El Bruno
Sr Cloud Advocate @Microsoft, former Microsoft MVP (14 years!), lazy runner, lazy podcaster, technology enthusiast
El Bruno
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022