Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Overview

Informative-tracking-benchmark

Informative tracking benchmark (ITB)

  • higher diversity. It contains 9 representative scenarios and 180 diverse videos.
  • more effective. Sequences are carefully selected based on chellening level, discriminative strength, and density of appearance variations.
  • more efficient. It is constructed with 7% out of 1.2 M frames allows saving 93% of evaluation time (3,625 seconds on informative benchmark vs. 50,000 seconds on all benchmarks) for a real-time tracker (24 frames per second).
  • more rigorous comparisons. (All the baseline methods are re-evaluated using the same protocol, e.g., using the same training set and finetuning hyper-parameters on a specified validate set).

An Informative Tracking Benchmark, Xin Li, Qiao Liu, Wenjie Pei, Qiuhong Shen, Yaowei Wang, Huchuan Lu, Ming-Hsuan Yang [Paper]

News:

  • 2021.12.09 The informative tracking benchmark is released.

Introduction

Along with the rapid progress of visual tracking, existing benchmarks become less informative due to redundancy of samples and weak discrimination between current trackers, making evaluations on all datasets extremely time-consuming. Thus, a small and informative benchmark, which covers all typical challenging scenarios to facilitate assessing the tracker performance, is of great interest. In this work, we develop a principled way to construct a small and informative tracking benchmark (ITB) with 7% out of 1.2 M frames of existing and newly collected datasets, which enables efficient evaluation while ensuring effectiveness. Specifically, we first design a quality assessment mechanism to select the most informative sequences from existing benchmarks taking into account 1) challenging level, 2) discriminative strength, 3) and density of appearance variations. Furthermore, we collect additional sequences to ensure the diversity and balance of tracking scenarios, leading to a total of 20 sequences for each scenario. By analyzing the results of 15 state-of-the-art trackers re-trained on the same data, we determine the effective methods for robust tracking under each scenario and demonstrate new challenges for future research direction in this field.

Dataset Samples

Dataset Download (8.15 GB) and Preparation

[GoogleDrive] [BaiduYun (Code: intb)]

After downloading, you should prepare the data in the following structure:

ITB
 |——————Scenario_folder1
 |        └——————seq1
 |        |       └————xxxx.jpg
 |        |       └————groundtruth.txt
 |        └——————seq2
 |        └——————...
 |——————Scenario_folder2
 |——————...
 └------ITB.json

Both txt and json annotation files are provided.

Evaluation ToolKit

The evaluation tookit is wrote in python. We also provide the interfaces to the pysot and pytracking tracking toolkits.

You may follow the below steps to evaluate your tracker.

  1. Download this project:

    git clone [email protected]:XinLi-zn/Informative-tracking-benchmark.git
    
  2. Run your method with one of the following ways:

    base interface.
    Integrating your method into the base_toolkit/test_tracker.py file and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python test_tracker.py --dataset ITB --dataset_path /path-to/ITB
    

    pytracking interface. (pytracking link)
    Merging the files in pytracking_toolkit/pytracking to the counterpart files in your pytracking toolkit and then running the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python run_tracker.py tracker_name tracker_parameter  --dataset ITB --descrip
    

    pysot interface. (pysot link)
    Putting the pysot_toolkit into your tracker folder and adding your tracker to the 'test.py' file in the pysot_toolkit. Then run the below command to evaluate your tracker.

    CUDA_VISIBLE_DEVICES=0 python -u pysot_toolkit/test.py --dataset ITB --name 'tracker_name' 
    
  3. Compute the performance score:

    Here, we use the performance analysis codes in the pysot_toolkit to compute the score. Putting the pysot_toolkit into your tracker folder and use the below commmand to compute the performance score.

    python eval.py -p ./results-example/  -d ITB -t transt
    

    The above command computes the score of the results put in the folder of './pysot_toolkit/results-example/ITB/transt*/*.txt' and it shows the overall results and the results of each scenario.

Acknowledgement

We select several sequences with the hightest quality score (defined in the paper) from existing tracking datasets including OTB2015, NFS, UAV123, NUS-PRO, VisDrone, and LaSOT. Many thanks to their great work!

  • [OTB2015 ] Object track-ing benchmark. Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. IEEE TPAMI, 2015.
  • [ NFS ] Need for speed: A benchmark for higher frame rate object tracking. Kiani Galoogahi, Hamed and Fagg, et al. ICCV 2017.
  • [ UAV123 ] A benchmark and simulator for uav tracking. Mueller, Matthias and Smith, Neil and Ghanem, Bernard. ECCV 2016.
  • [NUS-PRO ] Nus-pro: A new visual tracking challenge. Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, Shuicheng Yan. PAMI 2015.
  • [VisDrone] Visdrone-det2018: The vision meets drone object detection in image challenge results. Pengfei Zhu, Longyin Wen, et al. ECCVW 2018.
  • [ LaSOT ] Lasot: A high-quality benchmark for large-scale single object tracking. Heng Fan, Liting Lin, et al. CVPR 2019.

Contact

If you have any questions about this benchmark, please feel free to contact Xin Li at [email protected].

Owner
Xin Li
Xin Li
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022