Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Overview

Symbolic Learning to Optimize

This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Introduction

Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks. Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training. However, they face two common pitfalls: (1) scalability: the numerical rules represented by neural networks create extra memory overhead for applying L2O models, and limits their applicability to optimizing larger tasks; (2) interpretability: it is unclear what each L2O model has learned in its black-box optimization rule, nor is it straightforward to compare different L2O models in an explainable way. To avoid both pitfalls, this paper proves the concept that we can ``kill two birds by one stone'', by introducing the powerful tool of symbolic regression to L2O. In this paper, we establish a holistic symbolic representation and analysis framework for L2O, which yields a series of insights for learnable optimizers. Leveraging our findings, we further propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuned optimizers. Our work is set to supply a brand-new perspective to L2O research.

Our approach:

First train a neural network (LSTM) based optimizer, then leverage the symbolic regression tool to trouble shoot and analyze the neural network based optimizer. The yielded symbolic rule serve as a light weight light-weight surrogate of the original optimizer.

Our main findings:

Example of distilled equations from DM model:

Example of distilled equations from RP model (they are simpler than the DM surrogates, and yet more effective for the optimization task):

Distilled symbolic rules fit the optimizer quite well:

The distilled symbolic rule and underlying rules

Distilled symbolic rules perform same optimization task well, compared with the original numerical optimizer:

The light weight symbolic rules are able to be meta-tuned on large scale (ResNet-50) optimizee and get good performance:

ss large scale optimizee

The symbolic regression passed the sanity checks in the optimization tasks:

Installation Guide

The installation require no special packages. The tensorflow version we adoped is 1.14.0, and the PyTorch version we adopted is 1.7.1.

Training Guide

The three files:

torch-implementation/l2o_train_from_scratch.py

torch-implementation/l2o_symbolic_regression_stage_2_3.py

torch-implementation/l2o_evaluation.py

are pipline scripts, which integrate the multi-stage experiments. The detailed usages are specified within these files. We offer several examples below.

  • In order to train a rnn-prop model from scratch on mnist classification problem setting with 200 epochs, each epoch with length 200, unroll length 20, batch size 128, learning rate 0.001 on GPU-0, run:

    python l2o_train_from_scratch.py -m tras -p mni -n 200 -l 200 -r 20 -b 128 -lr 0.001 -d 0

  • In order to fine-tune an L2O model on the CNN optimizee with 200 epochs, each epoch length 1000, unroll length 20, batch size 64, learning rate 0.001 on GPU-0, first put the .pth model checkpoint file (the training script above will automatically save it in a new folder under current directory) under the first (0-th, in the python index) location in __WELL_TRAINED__ specified in torch-implementation/utils.py , then run the following script:

    python l2o_train_from_scratch.py -m tune -pr 0 -p cnn -n 200 -l 1000 -r 20 -b 64 -lr 0.001 -d 0

  • In order to generate data for symbolic regression, if desire to obtain 50000 samples evaluated on MNIST classification problem, with optimization trajectory length of 300 steps, using GPU-3, then run:

    python l2o_evaluation.py -m srgen -p mni -l 300 -s 50000 -d 3

  • In order to distill equation from the previously saved offline SR dataset, check and run: torch-implementation/sr_train.py

  • In order to fine-tune SR equation, check and run: torch-implementation/stage023_mid2021_update.py

  • In order to convert distilled symbolic equation into latex readable form, check and run: torch-implementation/sr_test_get_latex.py.py

  • In order to calculate how good the symbolic is fitting the original model, we use the R2-scores; to compute it, check and run: torch-implementation/sr_test_cal_r2.py

  • In order to train and run the resnet-class optimizees, check and run: torch-implementation/run_resnet.py

There are also optional tensorflow implementations of L2O, including meta-training the two benchmarks used in this paper: DM and Rnn-prop L2O. However, all steps before generating offline datasets in the pipline is only supportable with torch implementations. To do symbolic regression with tensorflow implementation, you need to manually generate records (an .npy file) of shape [N_sample, num_feature+1], which concatenate the num_feature dimensional x (symbolic regresison input) and 1 dimensional y (output), containing N_sample samples. Once behavior dataset is ready, the following steps can be shared with torch implementation.

  • In order to train the tensorflow implementation of L2O, check and run: tensorflow-implementation/train_rnnprop.py, tensorflow-implementation/train_dm.py

  • In order to evaluate the tensorflow implementation of L2O and generate offline dataset for symbolic regression, check and run: tensorflow-implementation/evaluate_rnnprop.py, tensorflow-implementation/evaluate_dm.py.

Other hints

Meta train the DM/RP/RP_si models

run the train_optimizer() functionin torch-implementation/meta.py

Evaluate the optimization performance:

run theeva_l2o_optimizer() function in torch-implementation/meta.py

RP model implementations:

TheRPOptimizer in torch-implementation/meta.py

RP_si model implementations:

same as RP, set magic=0; or more diverse input can be enabled by setting grad_features="mt+gt+mom5+mom99"

DM model implementations:

DMOptimizer in torch-implementation/utils.py

SR implementations:

torch-implementation/sr_train.py

torch-implementation/sr_test_cal_r2.py

torch-implementation/sr_test_get_latex.py

other SR options and the workflow:

srUtils.py

Citation

comming soon.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022