Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Overview

Symbolic Learning to Optimize

This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Introduction

Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks. Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training. However, they face two common pitfalls: (1) scalability: the numerical rules represented by neural networks create extra memory overhead for applying L2O models, and limits their applicability to optimizing larger tasks; (2) interpretability: it is unclear what each L2O model has learned in its black-box optimization rule, nor is it straightforward to compare different L2O models in an explainable way. To avoid both pitfalls, this paper proves the concept that we can ``kill two birds by one stone'', by introducing the powerful tool of symbolic regression to L2O. In this paper, we establish a holistic symbolic representation and analysis framework for L2O, which yields a series of insights for learnable optimizers. Leveraging our findings, we further propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuned optimizers. Our work is set to supply a brand-new perspective to L2O research.

Our approach:

First train a neural network (LSTM) based optimizer, then leverage the symbolic regression tool to trouble shoot and analyze the neural network based optimizer. The yielded symbolic rule serve as a light weight light-weight surrogate of the original optimizer.

Our main findings:

Example of distilled equations from DM model:

Example of distilled equations from RP model (they are simpler than the DM surrogates, and yet more effective for the optimization task):

Distilled symbolic rules fit the optimizer quite well:

The distilled symbolic rule and underlying rules

Distilled symbolic rules perform same optimization task well, compared with the original numerical optimizer:

The light weight symbolic rules are able to be meta-tuned on large scale (ResNet-50) optimizee and get good performance:

ss large scale optimizee

The symbolic regression passed the sanity checks in the optimization tasks:

Installation Guide

The installation require no special packages. The tensorflow version we adoped is 1.14.0, and the PyTorch version we adopted is 1.7.1.

Training Guide

The three files:

torch-implementation/l2o_train_from_scratch.py

torch-implementation/l2o_symbolic_regression_stage_2_3.py

torch-implementation/l2o_evaluation.py

are pipline scripts, which integrate the multi-stage experiments. The detailed usages are specified within these files. We offer several examples below.

  • In order to train a rnn-prop model from scratch on mnist classification problem setting with 200 epochs, each epoch with length 200, unroll length 20, batch size 128, learning rate 0.001 on GPU-0, run:

    python l2o_train_from_scratch.py -m tras -p mni -n 200 -l 200 -r 20 -b 128 -lr 0.001 -d 0

  • In order to fine-tune an L2O model on the CNN optimizee with 200 epochs, each epoch length 1000, unroll length 20, batch size 64, learning rate 0.001 on GPU-0, first put the .pth model checkpoint file (the training script above will automatically save it in a new folder under current directory) under the first (0-th, in the python index) location in __WELL_TRAINED__ specified in torch-implementation/utils.py , then run the following script:

    python l2o_train_from_scratch.py -m tune -pr 0 -p cnn -n 200 -l 1000 -r 20 -b 64 -lr 0.001 -d 0

  • In order to generate data for symbolic regression, if desire to obtain 50000 samples evaluated on MNIST classification problem, with optimization trajectory length of 300 steps, using GPU-3, then run:

    python l2o_evaluation.py -m srgen -p mni -l 300 -s 50000 -d 3

  • In order to distill equation from the previously saved offline SR dataset, check and run: torch-implementation/sr_train.py

  • In order to fine-tune SR equation, check and run: torch-implementation/stage023_mid2021_update.py

  • In order to convert distilled symbolic equation into latex readable form, check and run: torch-implementation/sr_test_get_latex.py.py

  • In order to calculate how good the symbolic is fitting the original model, we use the R2-scores; to compute it, check and run: torch-implementation/sr_test_cal_r2.py

  • In order to train and run the resnet-class optimizees, check and run: torch-implementation/run_resnet.py

There are also optional tensorflow implementations of L2O, including meta-training the two benchmarks used in this paper: DM and Rnn-prop L2O. However, all steps before generating offline datasets in the pipline is only supportable with torch implementations. To do symbolic regression with tensorflow implementation, you need to manually generate records (an .npy file) of shape [N_sample, num_feature+1], which concatenate the num_feature dimensional x (symbolic regresison input) and 1 dimensional y (output), containing N_sample samples. Once behavior dataset is ready, the following steps can be shared with torch implementation.

  • In order to train the tensorflow implementation of L2O, check and run: tensorflow-implementation/train_rnnprop.py, tensorflow-implementation/train_dm.py

  • In order to evaluate the tensorflow implementation of L2O and generate offline dataset for symbolic regression, check and run: tensorflow-implementation/evaluate_rnnprop.py, tensorflow-implementation/evaluate_dm.py.

Other hints

Meta train the DM/RP/RP_si models

run the train_optimizer() functionin torch-implementation/meta.py

Evaluate the optimization performance:

run theeva_l2o_optimizer() function in torch-implementation/meta.py

RP model implementations:

TheRPOptimizer in torch-implementation/meta.py

RP_si model implementations:

same as RP, set magic=0; or more diverse input can be enabled by setting grad_features="mt+gt+mom5+mom99"

DM model implementations:

DMOptimizer in torch-implementation/utils.py

SR implementations:

torch-implementation/sr_train.py

torch-implementation/sr_test_cal_r2.py

torch-implementation/sr_test_get_latex.py

other SR options and the workflow:

srUtils.py

Citation

comming soon.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
End-To-End Crowdsourcing

End-To-End Crowdsourcing Comparison of traditional crowdsourcing approaches to a state-of-the-art end-to-end crowdsourcing approach LTNet on sentiment

Andreas Koch 1 Mar 06, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022