4th place solution to datafactory challenge by Intermarché.

Overview

Solution to Datafactory challenge by Intermarché.

4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to predict the sales made by intermarche in the first quarter of 2019. We have the data of the past year (2018) to train our model to fit the sales.

Data 💿

We have the record of sales for a set of pairs (store, item) and for each day of 2018 (if there was at least one sale). The data are structured as:

date store item quantity
2018-01-01 1 12 1
2018-01-01 1 17 2
2018-01-01 1 22 3

We have additional tables available such as:

  • Product characteristics.
  • Store characteristics.
  • Product prices by store and by quarter.

Solution 🤖

The main difficulty of the challenge is to find the days for which a store has recorded no sales for a given product. Indeed, Intermarché does not provide records for which the target variable (quantity) is equal to 0. I found that adding up to 5 zeros after a sale for a given pair (store / item) maximized the performance of my model and limited the overfitting of my aggregates.

Features:

  • Aggregates by item / store (mean + std)
  • Aggregates on prices. (mean)
  • Aggregates on the characteristics of the stores. (mean)
  • Aggregates on product characteristics. (mean)
  • Rolling medians over the last 9 weeks.
  • Features on dates. (weekend / holidays / day of the week)

I used LightGBM and performed a 3-fold cross-validation with bagging to make my prediction. I transformed the target variable to train my model using quantity = log(1 + quantity). Poisson loss helps a bit. I didn't look for the hyperparameters of the model.

Finally I set all predictions of February and March as the predictions of the second and third week of January.

Also I set to 0 the set of predictions associated to triplets (store / item / day of the week) for which we have not enough records in the training set.

Run ♻️

To reproduce my results, you must download the data in the folder data/raw.

python scripts/prepare_raw_data.py
python scripts/features/aggs_items.py
python scripts/features/aggs_prices.py
python scripts/features/aggs_stores.py
python scripts/features/aggs.py 
python scripts/features/lags.py
python scripts/features/cal.py 
python scripts/make_train_test.py
python scripts/learn.py
python scripts/polish_sub.py

License

This project is free and open-source software licensed under the MIT license.

Owner
Raphael Sourty
PhD Student @ IRIT and Renault
Raphael Sourty
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021