Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Overview

Learning What To Do by Simulating the Past

This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) algorithm introduced in the paper "Learning What To Do by Simulating the Past". This code is provided as is, and will not be maintained. Here we describe how to reproduce the experimental results reported in the paper. You can find video of policies trained with Deep RLSP here.

Citation

David Lindner, Rohin Shah, Pieter Abbeel, Anca Dragan. Learning What To Do by Simulating the Past. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{lindner2021learning,
    title={Learning What To Do by Simulating the Past},
    author={Lindner, David and Shah, Rohin and Abbeel, Pieter and Dragan, Anca},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2021},
}

Table of Contents

Set up the environment

There are two options to set up the environment to run the code: either using Docker, or setting up the environment manually using Anaconda. We recommend to use the Docker setup.

Docker

You can use Docker to set up the dependencies including MuJoCo automatically. To do this install Docker, then copy a valid MuJoCo key to docker/mjkey.txt, and execute the following commands:

docker build --tag deep-rlsp:1.0 docker
docker run -v `pwd`:/deep-rlsp/ -w /deep-rlsp/ -i -t deep-rlsp:1.0 bash
conda activate deep-rlsp

The first command sets up a container with all required dependencies including MuJoCo. The second command starts an interactive shell inside the container and the third command activates the Anaconda environment set up inside the container. You can now run all experiments inside this container. Note, that you might have to modify docker/Dockerfile to use Tensorflow with GPU support.

Manual setup

Alternatively, you can set up the same Anaconda environment manually. In this case MuJoCo has to be installed locally. If using a non-standard location, the environment variables MUJOCO_PY_MJKEY_PATH and MUJOCO_PY_MUJOCO_PATH have to be set accordingly.

To perform the manual setup, install Anaconda locally and run the following commands to set up the environment:

conda env create -f docker/environment.yml
conda activate deep-rlsp
pip install mujoco-py==2.0.2.9
pip install -e .
conda activate deep-rlsp

This sets up an Anaconda environment with the required dependencies and activates it, which can then be used to run the code.

Reproducing the experiments

Now we describe how to reproduce the experiments described in the paper. We first describe the experiments in Gridworld environments, discussed in Section 3.2, and then the experiments in MuJoCo environments, discussed in Sections 3.3 and 3.4. For each of these we describe how to run Deep RLSP, the ablations discussed in the paper, and GAIL as a baseline.

Gridworld experiments

To run the Gridworld experiments reported in Section 3.2, you first have to train an inverse dynamics model for each environment:

python scripts/train_inverse_dynamics.py --gridworlds RoomDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds ApplesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds TrainDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesEasy-v0
python scripts/train_inverse_dynamics.py --gridworlds RoomBad-v0

The models will be saved in tf_ckpt, and will have names such as tf_ckpt_mlp_RoomDefault-v0_20210313_160730. You might have to create the folder tf_ckpt before running the models.

You can then run the experiments with the following commands:

python src/deep_rlsp/run.py with latent_rlsp_config room_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218
python src/deep_rlsp/run.py with latent_rlsp_config train_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_TrainDefault-v0_20200930_132234
python src/deep_rlsp/run.py with latent_rlsp_config apples_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_ApplesDefault-v0_20200930_132414
python src/deep_rlsp/run.py with latent_rlsp_config batteries_easy inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config batteries_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config room_bad inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218

adapting the paths of the inverse dynamics model.

You can run the "AverageFeatures" ablation by replacing latent_rlsp_config with latent_rlsp_ablation in the commands above.

MuJoCo experiments

To reproduce our experiments in the MuJoCo simulator, that we report in Sections 3.3 and 3.4, you need to perform the following steps:

  1. Obtain an original policy
  2. Run Deep RLSP
  3. Evaluate the results
  4. Compare to baselines / ablations

We now describe each step in turn.

Obtaining an original policy

We consider two different ways of obtaining policies to immitate:

  1. Obtain policy by optimizing a given reward function
  2. Obtain policy by running Dynamics-Aware Unsupervised Discovery of Skills (DADS)

Obtain policy by optimizing a given reward function

To train a policy on the reward function of a given MuJoCo environment, use the scripts/train_sac.py script. With the following commands you can train policies on the environments we discuss in the paper and save them in the policies/ folder:

python scripts/train_sac.py InvertedPendulum-v2 policies/sac_pendulum_6e4 --timesteps 60000
python scripts/train_sac.py HalfCheetah-FW-v2 policies/sac_cheetah_fw_2e6 --timesteps 2000000
python scripts/train_sac.py HalfCheetah-BW-v2 policies/sac_cheetah_bw_2e6 --timesteps 2000000
python scripts/train_sac.py Hopper-v2 policies/sac_hopper_2e6 --timesteps 2000000

This uses the soft actor-critic algorithm to train a policy using the hyperparameters from rl-baselines-zoo. The hyperparameters are defined in src/deep_rlsp/solvers/__init__.py.

For convenience, we provide trained policies in the policies/ folder of this repository.

Obtain policy by running DADS

We run DADS using the code provided by the authors. To reproduce the our experiments, we provide rollouts sampled from the jumping and balancing skills in the folder skills/.

Run Deep RLSP

We are now ready to run the full Deep RLSP algorithm. The main file to run experiments is located at src/deep_rlsp/run_mujoco.py. The following commands reproduce the experiments discussed in the paper:

Pendulum

python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=50

Cheetah running forward

python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=50

Cheetah running backward

python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=50

Hopper

python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=50

Cheetah balancing skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=50

Cheetah jumping skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=50

The results will be saved in the results/ folder. The trained (VAE and dynamics) models will be saved in tf_ckpt.

Evaluate the results

In the paper, we evaluate Deep RLSP in two ways:

  1. Train a new policy on the inferred reward function from Deep RLSP and evaluate this policy (as in Table 1)
  2. Evaluate the policy trained during Deep RLSP (for the balancing and jumping skills)

Train a new policy on the inferred reward function

To produce the results provided in Table 1 in the paper, we run SAC on the final reward function inferred by the Deep RLSP algorithm. To do this run the following command

python scripts/mujoco_evaluate_inferred_reward.py with experiment_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

providing the subfolder of results/ that corresponds to the experiment you want to evaluate. This creates a sub-folder in results/mujoco/eval that contains the trained policy.

Then, to evaluate this policy, run

python scripts/evaluate_policy.py results/mujoco/eval/20200605_203113_20200603_220928_InvertedPendulum-v2_optimal_1/policy.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

Evaluate the policy trained during Deep RLSP

The policies trained during Deep RLSP are saved in the results folder of a specific run as rlsp_policy_1.zip, rlsp_policy_2.zip, ...

To evaluate these policies, run

python scripts/evaluate_policy.py results/mujoco/20200528_150813_InvertedPendulum-v2_optimal/rlsp_policy_112.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

AverageFeatures and Waypoints ablations

To ensure comparability with a limited number of random seeds, we run the ablations with the same trained VAE and dynamics models and the same input states as Deep RLSP. This can be done the following commands:

python src/deep_rlsp/ablation_AverageFeatures.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal
python src/deep_rlsp/ablation_Waypoints.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

passing a folder containing the corresponding results of Deep RLSP as an argument. The policy returned by this baseline algorithm can be found in results/mujoco/, and they can also be visualized and evaluated using the scripts/evaluate_policy.py script.

Compare to GAIL

Running Generative Adversarial Imitation Learning (GAIL) requires the imitation library. You can install it using:

pip install imitation==0.1.1

To run GAIL, we provide demonstrations from the expert policies in the correct format in the demonstrations folder. You can create demonstration data from already trained expert policies by running:

python scripts/create_demonstrations.py policies/sac_cheetah_fw_2e6.zip demonstrations/sac_cheetah_fw_traj_len_{}_seed_{}.pkl 10 generate_seed HalfCheetah-FW-v2 1

Then you can run GAIL on the demonstration data by running:

python scripts/run_gail.py with gail half_cheetah env_name='HalfCheetah-FW-v2' rollout_path=demonstrations/sac_cheetah_fw_traj_len_1_seed_22750069.pkl log_dir=./gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/

To visualize the resulting policies:

python scripts/evaluate_policy.py gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/checkpoints/final/gen_policy gail HalfCheetah-FW-v2 --render --out_video=videos/gail_balancing_len_1.mp4

Code quality

We use black for code formatting, flake8 for linting, and mypy to check type hints. You can run all checks with bash code_checks.sh and unit tests with python setup.py test.

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022