A "gym" style toolkit for building lightweight Neural Architecture Search systems

Overview

gymnastics

License CI status Code analysis

A "gym" style toolkit for building lightweight Neural Architecture Search systems. I know, the name is awful.

Installation

Preferred option: Install from source:

git clone [email protected]:jack-willturner/gymnastics.git
cd gymnastics
python setup.py install

To install the latest release version:

pip install gymnastics

If you want to use NAS-Bench-101, follow the instructions here to get it set up.

Overview

Over the course of the final year of my PhD I worked a lot on Neural Architecture Search (NAS) and built a bunch of tooling to make my life easier. This is an effort to standardise the various features into a single framework and provide a "gym" style toolkit for comparing various algorithms.

The key use cases for this library are:

  • test out new predictors on various NAS benchmarks
  • visualise the cells/graphs of your architectures
  • add new operations to NAS spaces
  • add new backbones to NAS spaces

The framework revolves around three key classes:

  1. Model
  2. Proxy
  3. SearchSpace

The anatomy of NAS

We can break down NAS spaces into three separate components: the skeleton or backbone of the network, the possible cells that can fill the skeletons, and the possible operations that can fill the cells. NAS papers and benchmarks all define their own versions of each of these variables. Our goal here is to de-couple the "search strategy" from the "search space" by allowing NAS designers to test out their technique on many NAS search spaces very easily. Specifically, the goal is the provide an easy interface for defining each column of the picture above.

Obligatory builder pattern README example

Using gymnastics we can very easily reconstruct NAS spaces (the goal being that it's easy to define new and exciting ones).

For example, here's how easy it is to redefine the NATS-Bench / NAS-Bench-201 search space:

best_score: best_score = score best_model = model best_model.show_picture() ">
from gymnastics.searchspace import SearchSpace, CellSpace, Skeleton
from gymnastics.searchspace.ops import Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize

search_space = SearchSpace(
    CellSpace(
        ops=[Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize], num_nodes=4, num_edges=6
    ),
    Skeleton(
        style=ResNetCIFAR,
        num_blocks=[5, 5, 5],
        channels_per_stage=[16, 32, 64],
        strides_per_stage=[1, 2, 2],
        block_expansion=1
    ),
)


# create an accuracy predictor
from gymnastics.proxies import NASWOT
from gymnastics.datasets import CIFAR10Loader

proxy = NASWOT()
dataset = CIFAR10Loader(path="~/datasets/cifar10", download=False)

minibatch, _ = dataset.sample_minibatch()

best_score = 0.0
best_model = None

# try out 10 random architectures and save the best one
for i in range(10):

    model = search_space.sample_random_architecture()

    y = model(minibatch)

    score = proxy.score(model, minibatch)

    if score > best_score:
        best_score = score
        best_model = model

best_model.show_picture()

Which prints:

Have a look in examples/ for more examples.

NAS-Benchmarks

If you have designed a new proxy for accuracy and want to test its performance, you can use the benchmarks available in benchmarks/.

The interface to the benchmarks is exactly the same as the above example for SearchSpace.

For example, here we score networks from the NDS ResNet space using random input data:

import torch
from gymnastics.benchmarks import NDSSearchSpace
from gymnastics.proxies import Proxy, NASWOT

search_space = NDSSearchSpace(
    "~/nds/data/ResNet.json", searchspace="ResNet"
)

proxy: Proxy = NASWOT()
minibatch: torch.Tensor = torch.rand((10, 3, 32, 32))

scores = []

for _ in range(10):
    model = search_space.sample_random_architecture()
    scores.append(proxy.score(model, minibatch))

Additional supported operations

In addition to the standard NAS operations we include a few more exotic ones, all in various states of completion:

Op Paper Notes
conv - params: kernel size
gconv - + params: group
depthwise separable pdf + no extra params needed
mixconv pdf + params: needs a list of kernel_sizes
octaveconv pdf Don't have a sensible way to include this as a single operation yet
shift pdf no params needed
ViT pdf
Fused-MBConv pdf
Lambda pdf

Repositories that use this framework

Alternatives

If you are looking for alternatives to this library, there are a few which I will try to keep a list of here:

Owner
Jack Turner
Jack Turner
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022