A "gym" style toolkit for building lightweight Neural Architecture Search systems

Overview

gymnastics

License CI status Code analysis

A "gym" style toolkit for building lightweight Neural Architecture Search systems. I know, the name is awful.

Installation

Preferred option: Install from source:

git clone [email protected]:jack-willturner/gymnastics.git
cd gymnastics
python setup.py install

To install the latest release version:

pip install gymnastics

If you want to use NAS-Bench-101, follow the instructions here to get it set up.

Overview

Over the course of the final year of my PhD I worked a lot on Neural Architecture Search (NAS) and built a bunch of tooling to make my life easier. This is an effort to standardise the various features into a single framework and provide a "gym" style toolkit for comparing various algorithms.

The key use cases for this library are:

  • test out new predictors on various NAS benchmarks
  • visualise the cells/graphs of your architectures
  • add new operations to NAS spaces
  • add new backbones to NAS spaces

The framework revolves around three key classes:

  1. Model
  2. Proxy
  3. SearchSpace

The anatomy of NAS

We can break down NAS spaces into three separate components: the skeleton or backbone of the network, the possible cells that can fill the skeletons, and the possible operations that can fill the cells. NAS papers and benchmarks all define their own versions of each of these variables. Our goal here is to de-couple the "search strategy" from the "search space" by allowing NAS designers to test out their technique on many NAS search spaces very easily. Specifically, the goal is the provide an easy interface for defining each column of the picture above.

Obligatory builder pattern README example

Using gymnastics we can very easily reconstruct NAS spaces (the goal being that it's easy to define new and exciting ones).

For example, here's how easy it is to redefine the NATS-Bench / NAS-Bench-201 search space:

best_score: best_score = score best_model = model best_model.show_picture() ">
from gymnastics.searchspace import SearchSpace, CellSpace, Skeleton
from gymnastics.searchspace.ops import Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize

search_space = SearchSpace(
    CellSpace(
        ops=[Conv3x3, Conv1x1, AvgPool2d, Skip, Zeroize], num_nodes=4, num_edges=6
    ),
    Skeleton(
        style=ResNetCIFAR,
        num_blocks=[5, 5, 5],
        channels_per_stage=[16, 32, 64],
        strides_per_stage=[1, 2, 2],
        block_expansion=1
    ),
)


# create an accuracy predictor
from gymnastics.proxies import NASWOT
from gymnastics.datasets import CIFAR10Loader

proxy = NASWOT()
dataset = CIFAR10Loader(path="~/datasets/cifar10", download=False)

minibatch, _ = dataset.sample_minibatch()

best_score = 0.0
best_model = None

# try out 10 random architectures and save the best one
for i in range(10):

    model = search_space.sample_random_architecture()

    y = model(minibatch)

    score = proxy.score(model, minibatch)

    if score > best_score:
        best_score = score
        best_model = model

best_model.show_picture()

Which prints:

Have a look in examples/ for more examples.

NAS-Benchmarks

If you have designed a new proxy for accuracy and want to test its performance, you can use the benchmarks available in benchmarks/.

The interface to the benchmarks is exactly the same as the above example for SearchSpace.

For example, here we score networks from the NDS ResNet space using random input data:

import torch
from gymnastics.benchmarks import NDSSearchSpace
from gymnastics.proxies import Proxy, NASWOT

search_space = NDSSearchSpace(
    "~/nds/data/ResNet.json", searchspace="ResNet"
)

proxy: Proxy = NASWOT()
minibatch: torch.Tensor = torch.rand((10, 3, 32, 32))

scores = []

for _ in range(10):
    model = search_space.sample_random_architecture()
    scores.append(proxy.score(model, minibatch))

Additional supported operations

In addition to the standard NAS operations we include a few more exotic ones, all in various states of completion:

Op Paper Notes
conv - params: kernel size
gconv - + params: group
depthwise separable pdf + no extra params needed
mixconv pdf + params: needs a list of kernel_sizes
octaveconv pdf Don't have a sensible way to include this as a single operation yet
shift pdf no params needed
ViT pdf
Fused-MBConv pdf
Lambda pdf

Repositories that use this framework

Alternatives

If you are looking for alternatives to this library, there are a few which I will try to keep a list of here:

Owner
Jack Turner
Jack Turner
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
RNN Predict Street Commercial Vitality

RNN-for-Predicting-Street-Vitality Code and dataset for Predicting the Vitality of Stores along the Street based on Business Type Sequence via Recurre

Zidong LIU 1 Dec 15, 2021
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022